Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập viết phương trình đường thẳng trong không gian - Nguyễn Thị Thu

Tài liệu gồm 19 trang hướng dẫn giải các dạng toán viết phương trình đường thẳng trong không gian. Trong chương trình Hình học 12, bài toán viết phương trình đường thẳng trong không gian là bài toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong các đề thi tốt nghiệp THPT và thi vào Cao đẳng, Đại học nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy các em còn lúng túng nhiều trong quá trình giải các bài toán về viết phương trình đường thẳng. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề : “Phân loại các dạng bài tập viết về phương trình đường thẳng trong không gian”. Trong chuyên đề, tôi đã đưa ra phân loại bài tập viết phương trình đường thẳng từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Ngoài ra, giúp cho các em làm tốt các bài thi tốt nghiệp cũng như thi vào các trường Cao đẳng và Đại học. Chuyên đề gồm 3 phần: + Phần I: Phương pháp chung để giải toán + Phần II: Một số dạng toán thường gặp + Phần III: Bài tập tự luận tự luyện + Phần IV: Bài tập trắc nghiệm tự luyện [ads] Các dạng toán viết phương trình đường thẳng trong không gian: + Dạng 1: Viết phương trình tham số và phương trình chính tắc của đường thẳng d biết d đi qua điểm M (x0; y0; z0) và có vectơ chỉ phương u = (a; b; c). + Dạng 2: Viết phương trình tham số của đường thẳng d biết d đi qua hai điểm A, B cho trước. + Dạng 3: Viết phương trình đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4: Viết phương trình đường thẳng d đi qua điểm M và song song với đường thẳng d’. + Dạng 5: Đường thẳng d đi qua điểm M và song song với 2 mặt phẳng cắt nhau (P) và (Q). + Dạng 6: Viết phương trình đường thẳng d đi qua điểm M, song song với mặt phẳng (P) và vuông góc với đường thẳng d’ (d’ không vuông góc với (P)). + Dạng 7 : Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (d1 và d2 là hai đường thẳng chéo nhau). + Dạng 8: Viết phương trình đường thẳng d đi qua điểm M đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 10: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 11: Viết phương trình đường thẳng d nằm trong mp(P) đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 12: Viết phương trình đường thẳng d song song với d’ đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 13: Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song d1 và d2 đồng thời d nằm trong mặt phẳng chứa d1 và d2. + Dạng 14: Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng d1 và d2 chéo nhau. + Dạng 15 : Viết phương trình tham số của đường thẳng d là hình chiếu của d’ trên mặt phẳng (P).

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 235 bài tập trắc nghiệm số phức có lời giải chi tiết
Tài liệu gồm 67 trang tuyển tập 235 bài tập trắc nghiệm số phức có đáp án kèm lời giải chi tiết. Các bài tập được phân thành các dạng: + Dạng 1. Số phức và các phép toán + Dạng 2. Phương trình trên tập số phức + Dạng 3. Tìm số phức thỏa mãn điều kiện cho trước + Dạng 4. Tập hợp các điểm biểu diễn số phức + Dạng 5. Biểu diễn hình học của số phức + Dạng 6. Số phức và GTLN – GTNN [ads]
Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao - Phạm Minh Tuấn
Tài liệu gồm 27 trang được biên soạn bởi tác giả Phạm Minh Tuấn hướng dẫn giải 65 bài toán số phức hay và khó, các bài toán số phức liên quan đến min – max, bất đẳng thức … đây là các bài toán thường xuất hiện trong các đề thi thử THPT Quốc gia môn Toán nhằm phân loại điểm 9 – 10. Trích dẫn tài liệu : + Gọi S là tập hợp các số phức z thỏa mãn |z – i| ≥ 3 và |z – 2 – 2i| ≤ 5. Kí hiệu z1, z2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính giá trị của biểu thức P = |z2 + 2.z1|. + Cho số phức w và hai số thực a, b. Biết rằng w + i và 2w – 1 là hai nghiệm của phương trình z^2 + az + b = 0. Tính a + b. + Cho số phức z thỏa mãn |z| = 1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = |z + 1| + |z^2 – z + 1|. Tính giá trị của M.n. [ads]
Các dạng bài tập số phức điển hình - Lê Bá Bảo, Vũ Ngọc Huyền
Tài liệu gồm 34 trang trình bày phương pháp giải, ví dụ mẫu và bài tập trắc nghiệm các dạng toán số phức điển hình trong chương trình Giải tích 12 chương 4, tài liệu được biên soạn bởi các tác giả Lê Bá Bảo và Vũ Thị Ngọc Huyền. Nội dung tài liệu được chia thành các phần: A. Lý thuyết I. Xây dựng tập hợp số phức và các khái niệm liên quan. II. Các phép toán với số phức. III. Giới thiệu một số tính năng tính toán số phức bằng máy tính Casio. [ads] B. Một số dạng toán về số phức I. Các bài toán liên quan tới khái niệm số phức. II. Dạng toán xác định tập hợp điểm biểu diễn số phức. III. Biểu diễn hình học của số phức quỹ tích phức. C. Bài tập rèn luyện kỹ năng 1. Phần thực, phần ảo của số phức. 2. Biểu diễn hình học của số phức. 3. Các phép toán với số phức, mô đun số phức và số phức liên hợp. 4. Phương trình phức.
Một số cách giải và kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio - Trần Thanh Tuyền
Tài liệu gồm 8 trang hướng một số cách giải, kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio, tài liệu cũng đưa ra những sai lầm cần tránh khi dùng máy tính cầm tay để giải. Nội dung chính gồm các phần: 1. Tìm số phức – xác định phần thực, phần ảo của số phức + Dạng 1: Không chứa z và liên hợp của z + Dạng 2: Có chứa z và liên hợp của z [ads] 2. Tìm tập hợp điểm biểu diễn số phức + Dạng 1: Chỉ dùng cho các đáp án có dạng là các đồ thị đường thẳng + Dạng 2: Làm được cho tất cả các loại đồ thị đường 3. Giải phương trình trên C + Dạng 1: Căn bậc 2 của số phức + Dạng 2: Phương trình không chứa đơn vị ảo i + Dạng 3: Phương trình chứa đơn vị ảo i