Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập VDC mặt nón, hình nón và khối nón

Tài liệu gồm 25 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) mặt nón, hình nón và khối nón, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 2 (mặt cầu, mặt trụ, mặt nón) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC mặt nón, hình nón và khối nón: A. LÍ THUYẾT TRỌNG TÂM Mặt nón tròn xoay. Hình nón tròn xoay. Khối nón tròn xoay. Công thức cần nhớ. Sơ đồ hệ thống hóa. B. CÁC DẠNG BÀI TẬP Dạng 1: Tính diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện của hình nón. Dạng 2: Tính thể tích khối nón, bài toán cực trị. Dạng 3: Bài toán thực tế về hình nón, khối nón.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm chuyên đề hình học tọa độ trong không gian có lời giải chi tiết
Tài liệu gồm 100 trang phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề hình học tọa độ trong không gian Oxyz có lời giải chi tiết, các bài tập được chọn lọc và trích dẫn trong các đề thi thử môn Toán. Các dạng toán tọa độ Oxyz gồm : + Dạng 1. Tọa độ điểm và vectơ trong không gian Oxyz + Dạng 2. Phương trình mặt cầu + Dạng 3. Phương trình mặt phẳng + Dạng 4. Phương trình đường thẳng + Dạng 5. Vị trí tương đối của mặt cầu, mặt phẳng và đường thẳng + Dạng 6. Tìm tọa độ điểm thỏa mãn điều kiện cho trước + Dạng 7. Cực trị trong tọa độ không gian Oxyz
Bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz - Nguyễn Khánh Nguyên
Tài liệu gồm 18 trang tổng hợp 146 câu hỏi trắc nghiệm phương pháp tọa độ trong không gian Oxyz theo các chủ đề: + Chủ đề 1. Hệ tọa độ Oxyz + Chủ đề 2. Phương trình mặt phẳng + Chủ đề 3. Phương trình đường thẳng + Chủ đề 4. Phương trình mặt cầu [ads] Trích dẫn tài liệu : + Cho bốn điểm A (1; -2; 0), B (0; -1; 1), C (2; 1; -1), D (3; 1; 4). Khẳng định nào đúng? A. Bốn điểm A, B, C, D là bốn điểm của một hình vuông B. Bốn điểm A, B, C, D là bốn điểm của một hình chữ nhật C. Bốn điểm A, B, C, D là bốn điểm của một hình thoi D. Bốn điểm A, B, C, D là bốn điểm của một tứ diện + Cho hai điểm A (4; 6; 2), B(2; 2; 0) và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó. + Xét các điểm A (0; 0; 1), B (m; 0; 0), C (0; n; 0) và D (1; 1; 1) với m > 0, n > 0 và m + n = 1. Biết rằng khi m, n thay đổi, tồn tại một mặt cầu cố định tiếp xúc với mặt phẳng (ABC) và đi qua D. Tính bán kính R của mặt cầu đó?
Hướng dẫn giải một số bài tập tọa độ trong không gian nâng cao - Phạm Minh Tuấn
Tài liệu gồm 22 trang tuyển tập 35 bài toán phương pháp tọa độ trong không gian nâng cao kèm lời giải chi tiết. Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, một mặt phẳng đi qua điểm M (1; 3; 9) và cắt các tia Ox, Oy, Oz lần lượt tại A (a; 0; 0), B (0; b; 0), C (c; 0; 0) với a, b, c là các số thực dương. Tìm giá trị của biểu thức P= a + b + c để thể tích tứ diện OABC đạt giá trị nhỏ nhất. [ads] + Trong không gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A trùng với gốc của hệ tọa độ. Cho B (a; 0; 0), D (0; a; 0), A’ (0; 0; b) với a, b > 0. Gọi M là trung điểm của cạnh CC’. Xác định tỉ số a/b để hai mặt phẳng (A’BD) và (BDM) vuông góc với nhau. + Trong không gian Oxyz, cho hai điểm A (1; 5; 0), B (3; 3; 6) và đường thẳng d: (x + 1)/2 = (y – 1)/-1 = z/2. Điểm M (a, b, c); thuộc d sao cho ΔMAB có diện tích nhỏ nhất, khi đó a + b + c = ?
Bài tập ôn chương phương pháp tọa độ trong không gian - Võ Thành Lâm
Tài liệu gồm 19 trang tuyển chọn các bài tập ôn chương phương pháp tọa độ trong không gian ôn thi học kỳ 2 Toán 12. 1. Hệ trục tọa độ oxyz – phương trình mặt cầu 2. Phương trình mặt phẳng 3. Phương trình đường thẳng 4. Hình chiếu – đối xứng – góc – khoảng cách 5. Vị trí tương đối [ads]