Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A)

Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A) Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A) Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A) bao gồm 25 bài toán theo hình thức điền kết quả. Đây là một bài thi quan trọng để đánh giá kiến thức và kỹ năng của học sinh trong môn Toán. Các bài toán trong đề thi có thể đa dạng về đề tài và độ khó, từ đơn giản đến phức tạp, đề cao khả năng tư duy logic và giải quyết vấn đề của thí sinh. Qua đề thi này, học sinh có cơ hội thể hiện kiến thức và năng lực của mình, đồng thời chuẩn bị tốt cho việc học tập và phát triển sau này.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2024 trường THCS Hoằng Thanh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Hoằng Thanh, huyện Hoằng Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 17 tháng 12 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 trường THCS Hoằng Thanh – Thanh Hóa : + Cho hai đường thẳng (d1): y = –x + m + 2 và (d2): y = (m2 – 2)x + 3. Tìm m để (d1) và (d2) song song với nhau. + Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của CD, kẻ AH vuông góc với MO tại H. a) Tính OH.OM theo R. b) Chứng minh: Bốn điểm M, A, I, O cùng thuộc một đường tròn. c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R). + Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức: P = 1 + 3/(xy + yz + xz).
Tuyển tập đề thi tuyển sinh lớp 10 môn Toán sở GDĐT Quảng Bình (2013 - 2024)
Tài liệu gồm 44 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán sở Giáo dục và Đào tạo tỉnh Quảng Bình (từ năm 2013 đến năm 2024), có đáp án và lời giải chi tiết. Mục lục : PHẦN I . ĐỀ THI 1. 1 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2023-2024 3. 2 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2022-2023 4. 3 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2021-2022 5. 4 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2020-2021 6. 5 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2017-2018 7. 6 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2016-2017 8. 7 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2015-2016 9. 8 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2014-2015 10. 9 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2013-2014 11. 10 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2012-2013 12. PHẦN II . LỜI GIẢI 13. 1 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2023-2024 15. 2 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2022-2023 17. 3 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2021-2022 19. 4 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2020-2021 22. 5 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2017-2018 25. 6 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2016-2017 28. 7 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2015-2016 31. 8 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2014-2015 34. 9 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2013-2014 37. 10 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2012-2013 39.
Đề thi vào 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Hùng Vương - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Gia Lai. Trích dẫn Đề thi vào 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Hùng Vương – Gia Lai : + Cho phương trình (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn: x12 + x22 = 16. + Bạn Tuấn lập kế hoạch tiết kiệm tiền để mua một cái laptop phục vụ cho việc học tập như sau: Hằng tháng, Tuấn tiết kiệm các khoản chi tiêu cá nhân để dành ra một triệu đồng. Vào ngày 01 hằng tháng Tuấn gửi vào tài khoản tiết kiệm của mình một triệu đồng và bắt đầu gửi vào ngày 01 tháng 7 năm 2023 để hưởng lãi suất 0,5%/tháng theo hình thức lãi kép (nghĩa là tiền lãi của tháng trước được cộng vào vốn để tính lãi cho tháng sau) và duy trì việc này liên tục trong 3 năm. (Biết tài khoản ban đầu của Tuấn là 0 đồng và hàng tháng Tuấn không rút vốn, lãi). a) Tính số tiền tiết kiệm Tuấn có được trong tài khoản tính đến ngày 02/8/2023. b) Tính đến ngày 02/10/2023 thì số tiền trong tài khoản tiết kiệm của Tuấn là bao nhiêu (làm tròn kết quả đến hàng đơn vị)? c) Hãy đề xuất công thức tính tổng số tiền trong tài khoản tiết kiệm sau kỳ gửi tháng thứ n (n là số tự nhiên, n ≥ 3). Sử dụng công thức đó để tính số tiền Tuấn có được trong tài khoản tính đến ngày 02/7/2026. + Từ điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB (A, B là tiếp điểm), cát tuyến MCD không đi qua tâm, MD > MC. a) Chứng minh rằng MA2 = MC.MD. b) Gọi H là giao điểm của MO và AB. Chứng minh rằng tứ giác CHOD nội tiếp. c) Tìm vị trí của điểm D trên đường tròn (O) để tam giác MAD có diện tích lớn nhất.
Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào thứ Bảy ngày 10 tháng 06 năm 2023. Trích dẫn Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Đồng Tháp : + Một tờ giấy hình tam giác ABC vuông tại A có AC = 8cm, AB = 6cm. Ở góc A, người ta cắt ra một hình vuông AMNP (M thuộc AB và P thuộc AC) có cạnh bằng 2 cm (tham khảo hình bên). Tính khoảng cách từ N đến BC. + Cho tam giác ABC nhọn (AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH, kẻ IJ song song với BC (J thuộc HE). Đường thẳng AJ cắt BC tại M. a) Chứng minh rằng tứ giác AIJE nội tiếp đường tròn. b) Chứng minh rằng D là trung điểm BM. c) Gọi L là giao điểm của hai đường thẳng EF và BC. Chứng minh rằng FLB = CAM. + Phiên chợ hè Lotus sử dụng hai loại thẻ: loại thẻ giá 3000 đồng và loại thẻ giá 4000 đồng. Vào dịp nghỉ hè, bạn An muốn dùng hết số tiền tiết kiệm của mình để mua x thẻ loại giá 3000 đồng và y thẻ loại giá 4000 đồng. Tìm số cách mua có đủ cả hai loại thẻ nếu tiền tiết kiệm của bạn An là 2023000 đồng.