Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy

Khối chóp có một cạnh bên vuông góc với đáy là dạng giả thiết được sử dụng rất nhiều trong các bài toán tính thể tích khối chóp, bởi nhờ vào giả thiết này, chúng ta sẽ xác định được ngay đường cao của khối chóp, đồng thời dựa vào định lý Py-ta-go, các hệ thức lượng trong tam giác vuông … sẽ tính được các yếu tố khác của khối chóp. Nhằm giúp các em học sinh rèn luyện giải toán liên quan đến dạng hình này, giới thiệu đề bài và lời giải chi tiết 97 bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy, với nhiều biến dạng và độ khó khác nhau, đây là các dạng bài thường gặp trong chương trình Hình học 12 và trong các đề thi THPT Quốc gia môn Toán. [ads] Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy: + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh SA vuông góc với đáy và SA = y. Trên cạnh AD lấy điểm M sao cho AM = x. Biết rằng x^2 + y^2 = a^2. Tìm giá trị lớn nhất của thể tích khối chóp S.ABCM. + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy (ABCD), đáy ABCD là hình thang vuông tại A và B có AB = a, AD = 3a, BC = a. Biết SA = a√3, tính thể tích khối chóp S.BCD theo a. + Cho khối tứ diện OABC với OA, OB, OC vuông góc từng đôi một và OA = a, OB = 2a, OC = 3a. Gọi M, N lần lượt là trung điểm của hai cạnh AC, BC. Thể tích của khối tứ diện OCMN tính theo a bằng? + Cho khối chóp S.ABC có đáy ABC là tam giác vuông cân có cạnh huyền BC = a và SA vuông góc với mặt phẳng đáy. Biết góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) bằng 45°. Thể tích của hình chóp S.ABC là? + Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và có độ dài là a. Thể tích khối tứ diện S.BCD bằng?

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu - Trần Đình Cư
Tài liệu tóm tắt lý thuyết, phân dạng, phương pháp giải và bài tập trắc nghiệm các dạng toán về khối đa diện, mặt nón, mặt trụ và mặt cầu. Chương 1. Khối đa diện Bài 1. Khái niệm về khối đa diện Bài 2. Khối đa diện lồi và khối đa diện đều Bài 3. Khái niệm về thể tích khối đa diện Vấn đề 1. Thể tích khối chóp + Dạng 1. Khối chóp có cạnh bên vuông góc đáy + Dạng 2. Khối chóp có hình chiếu của đỉnh lên mặt phẳng đáy + Dạng 3. Khối chóp có mặt bên vuông góc với đáy + Dạng 4. Khối chóp đều + Dạng 5. Tỉ lệ thể tích [ads] Vấn đề 2. Thể tích khối lăng trụ + Dạng 1. Khối lăng trụ đứng + Dạng 2. Khối lăng trụ đều + Dạng 3. Khối lăng trụ xiên Chương 2. Mặt nón, mặt trụ và mặt cầu Bài 1. Khái niệm về mặt tròn xoay Vấn đề 1. Mặt nón, hình nón và khối nón Vấn đề 2. Mặt trụ – hình trụ và khối trụ Bài 2. Mặt cầu + Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông + Dạng 2. Hình chóp có các cạnh bên bằng nhau + Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy + Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy
209 bài tập trắc nghiệm khối tròn xoay có đáp án - Lê Hoài Sơn
Tài liệu gồm 17 trang tuyển tập 209 bài tập trắc nghiệm khối tròn xoay có đáp án, tài liệu được biên soạn bởi thầy Lê Hoài Sơn. Trích dẫn tài liệu : + Cho ba điểm phân biệt A, B, C cùng nằm trên một mặt cầu, biết rằng góc ACB = 90 độ. Trong các khẳng định sau, khẳng định nào đúng ? A. Luôn có một đường tròn nằm trên mặt cầu ngoại tiếp tam giác ABC B. Tam giác ABC vuông cân tại C C. Mặt phẳng (ABC) cắt mặt cầu theo giao tuyến là một đường tròn lớn D. AB là một đường kính của mặt cầu [ads] + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Bất kì một hình tứ diện nào cũng có mặt cầu ngoại tiếp B. Bất kì một hình hộp chữ nhật nào cũng có một mặt cầu ngoại tiếp C. Bất kì một hình hộp nào cũng có một mặt cầu ngoại tiếp D. Bất kì một hình chóp đều nào cũng có một mặt cầu ngoại tiếp + Diện tích xung quanh của hình trụ bằng bao nhiêu? A. Hai lần tích của chu vi đáy với độ dài đường cao của nó B. Một nửa tích của chu vi đáy với độ dài đường sinh của nó C. Tích của chu vi đáy với độ dài đường sinh của nó D. Một nửa tích của chu vi đáy với độ dài đường cao của nó
Bài tập trắc nghiệm hình học không gian - Lê Viết Nhơn
Tài liệu gồm 68 trang tuyển tập các bài toán trắc nghiệm chuyên đề hình học không gian. Nội dung tài liệu gồm 2 chương: Chương I. Khối đa diện – thể tích khối đa diện Bài 1. Góc_khoảng cách Bài 2. Khối đa diện Bài 3. Thể tích Bài tập trắc nghiệm Phần 1. Khối đa diện Phần 2. Thể tích Phần 3. Tỷ số thể tích Phần 4. Góc – khoảng cách Phần 5. Mặt cầu ngoại tiếp khối đa diện Chương II. Mặt nón – mặt trụ – mặt cầu Phần 6. Mặt nón Phần 7. Mặt trụ Phần 8. Mặt cầu [ads] Trích dẫn tài liệu : + Từ một mảnh giấy hình vuông cạnh là 4cm, người ta gấp nó thành bốn phần đều nhau rồi dựng lên thành bốn mặt xung quanh của hình hình lăng trụ tứ giác đều như hình vẽ. Hỏi thể tích của khối lăng trụ này là bao nhiêu. + Khối lăng trụ ABC.A’B’C’ có đáy là một tam giác đều cạnh a, góc giữa cạnh bên và mặt phẳng đáy bằng 30 độ. Hình chiếu của đỉnh A’ trên mặt phẳng đáy (ABC) trùng với trung điểm của cạnh BC. Tính thể tích của khối lăng trụ đã cho. + Người ta cắt miếng bìa hình tam giác cạnh bằng 10cm như hình bên và gấp theo các đường kẻ, sau đó dán các mép lại để được hình tứ diện đều. Tính thể tích của khối tứ diện tạo thành.
Bài tập trắc nghiệm mặt cầu - hình cầu - khối cầu - Nguyễn Văn Huy
Tài liệu gồm 10 trang với 44 bài toán trắc nghiệm về mặt cầu – hình cầu và khối cầu, các bài toán có đáp án và lời giải chi tiết. Trích dẫn tài liệu : + Cho mặt cầu (S) có tâm I bán kính R = 5 và mặt phẳng (P) cắt (S) theo một đường tròn (C) có bán kính r = 3. Kết luận nào sau đây là sai? A. Tâm của (C) là hình chiếu vuông góc của I trên (P) B. (C) là giao tuyến của (S) và (P) C. Khoảng cách từ I đến (P) bằng 4 D. (C) là đường tròn giao tuyến lớn nhất của (P) và (S) [ads] + Trong các khẳng định sau, khẳng định nào sai? A. Mặt phẳng (P) tiếp xúc với mặt cầu (S) tâm O tại điểm H thì OH là khoảng cách ngắn nhất từ O đến một điểm bất kỳ nằm trong mặt phẳng (P) B. Chỉ có duy nhất hai mặt phẳng vuông góc với mặt phẳng cho trước và tiếp xúc với mặt cầu (S) C. Mặt phẳng cắt mặt cầu (S) theo đường tròn (C), tâm của đường tròn (C) là hình chiếu của tâm mặt cầu (S) xuống mặt phẳng (P) D. Tại điểm H nằm trên mặt cầu chỉ có 1 tiếp tuyến duy nhất + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Bất kì một hình tứ diện nào cũng có mặt cầu ngoại tiếp B. Bất kì một hình hộp chữ nhật nào cũng có một mặt cầu ngoại tiếp C. Bất kì một hình hộp nào cũng có một mặt cầu ngoại tiếp D. Bất kì một hình chóp đều nào cũng có một mặt cầu ngoại tiếp