Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm thể tích khối đa diện - Nguyễn Đại Dương

Tài liệu gồm 57 trang, gồm các bài toán trắc nghiệm thuộc chuyên đề khối đa diện và thể tích có đáp án. A. LÝ THUYẾT I. Khối đa diện 1. Khái niệm Hình H cùng với các điểm nằm trong H được họi là khối đa diện giới hạn bởi hình H. Khối đa diện được giới hạn bởi một hình gồm những đa giác phẳng thỏa mãn hai điều kiện: + Hai đa giác bất kì hoặc không có điểm chung hoặc có một đỉnh chung hoặc có một cạnh chung. + Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác. 2. Khối đa diện đều Khối đa diện lồi: Một khối đa diện được gọi là khối đa diện lồi nếu với bất kì hai điểm A và B nào của nó thì mọi điểm thuộc đoạn thẳng AB cũng thuộc khối đó. Khối đa diện đều: Khối đa diện đều là khối đa diện lồi có hai tính chất sau: + Các mặt là các đa giác đều có cùng số cạnh. + Mổi đỉnh là đỉnh chung của cùng một số cạnh. [ads] II. Thể tích khối đa diện 1. Thể tích khối chóp: Thể tích của một khối chóp bằng một phần ba tích số của diện tích đáy và chiều cao của khối chóp đó. 2. Thể tích lăng trụ – hình hộp: Thể tích của một khối lăng trụ bằng tích số của diện tích mặt đáy và chiều cao của lăng trụ đó. 3. Công thức tỉ số thể tích: Cho hình chóp S.ABC có A’, B’ và C’ lần lượt nằm trên các cạnh SA, SB và SC. Khi đó tỉ số thể tích giữa khối chóp S.A’B’C’ và khối chóp S.ABC có công thức: V/V’ = SA/S’A’.SB/S’B.SC/S’C. III. Các công thức thường dùng 1. Hệ thức lượng trong tam giác vuông 2. Hệ thức lượng trong tam giác thường 3. Diện tích của đa giác thông thường 4. Xác định chiều cao của hình chóp a. Hình chóp có một cạnh bên vuông góc với đáy: Chiều cao của hình chóp là độ dài cạnh bên vuông góc với đáy. b. Hình chóp có 1 mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là chiều cao của tam giác chứa trong mặt bên vuông góc với đáy. c. Hình chóp có 2 mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là giao tuyến của hai mặt bên cùng vuông góc với mặt phẳng đáy. d. Hình chóp đều: Chiều cao của hình chóp là đoạn thẳng nối đỉnh và tâm của đáy. Đối với hình chóp đều đáy là tam giác thì tâm là trọng tâm G của tam giác đều. B.TRẮC NGHIỆM KHÁCH QUAN CÓ ĐÁP ÁN

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm phương pháp tọa độ trong không gian - Đặng Ngọc Hiền
Tài liệu gồm 17 trang tuyển chọn các bài tập trắc nghiệm phương pháp tọa độ trong không gian. Tóm tắt lý thuyết và công thức cơ bản I. Vectơ pháp tuyến của mặt phẳng II. Phương trình mặt phẳng III. Khoảng cách từ một điểm đến một mặt phẳng IV. Vị trí tương đối của hai mặt phẳng VI. Góc giữa hai mặt phẳng Các dạng toán và bài tập trắc nghiệm Loại 1. Vectơ pháp tuyến của mặt phẳng Loại 2. Viết phương trình mặt phẳng (biết điểm và VTPT của mặt phẳng) Loại 3. Viết phương trình mặt phẳng (phương trình mặt phẳng theo đoạn chắn) [ads] Loại 4. Viết phương trình mặt phẳng (biết VTPT và một điều kiện) Loại 5. + Khoảng cách từ một điểm đến một mặt phẳng + Vị trí tương đối của hai mặt phẳng Loại 6. + Vị trí tương đối giữa mặt phẳng và mặt cầu. + Hình chiếu của một điểm lên mặt phẳng Loại 7. + Góc giữa hai mặt phẳng + Phương trình mặt phẳng (Biết hai điểm thuộc mặt phẳng và góc)
Bài tập trắc nghiệm chuyên đề hình học tọa độ Oxyz - Đặng Việt Đông
Tài liệu gồm 47 trang, với phần tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình học tọa độ Oxyz. Các bài toán được được phân dạng thành: + Tọa độ điểm, tọa độ véc tơ và các phép toán véc tơ (75 câu) + Phương trình mặt phẳng (86 câu) + Phương trình đường thẳng (31 câu) + Phương trình mặt cầu (49 câu) + Khoảng cách (34 câu) + Góc (15 câu) + Vị trí tương đối giữa điểm, mặt phẳng, đường thẳng, mặt cầu (50 câu) + Tìm điểm thỏa mãn yêu cầu bài toán (51 câu) [ads]
Bài tập tọa độ không gian phân theo dạng có lời giải chi tiết - Trần Sĩ Tùng
Tài liệu gồm 67 trang, tuyển chọn bài tập các dạng toán phương pháp tọa độ không gian có lời giải chi tiết. TĐKG 01: VIẾT PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng bằng cách xác định vectơ pháp tuyến Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách Dạng 4: Viết phương trình mặt phẳng liên quan đến góc Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác Dạng 6: Các dạng khác về viết phương trình mặt phẳng TĐKG 02: VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách Dạng 5: Viết phương trình đường thẳng liên quan đến góc Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác [ads] TĐKG 03: VIẾT PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Viết phương trình mặt cầu bằng cách xác định tâm và bán kính Dạng 2: Viết phương trình mặt cầu bằng cách xác định các hệ số của phương trình Dạng 3: Các bài toán liên quan đến mặt cầu TĐKG 04: TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC Dạng 1: Xác định điểm thuộc mặt phẳng Dạng 2: Xác định điểm thuộc đường thẳng Dạng 3: Xác định điểm thuộc mặt cầu Dạng 4: Xác định điểm trong không gian Dạng 5: Xác định điểm trong đa giác