Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán biến cố và xác suất của biến cố thường gặp

Tài liệu gồm 57 trang được biên soạn bởi thầy giáo Nguyễn Bảo Vương tuyển tập 175 câu hỏi và bài toán trắc nghiệm biến cố và xác suất của biến cố thường gặp trong đề thi Trung học Phổ thông Quốc gia môn Toán, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được phân chia thành các dạng bài riêng biệt tùy thuộc vào đặc điểm và phương pháp giải bài toán đó, tài liệu giúp học sinh học tốt chủ đề tổ hợp và xác suất (Đại số và Giải tích 11 chương 2) và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán sắp tới. Mục lục tài liệu các dạng toán biến cố và xác suất của biến cố thường gặp: Phần A . Câu hỏi Dạng toán 1 . Mô tả không gian mẫu và mối liên hệ giữa các biến cố. Dạng toán 2 . Các dạng toán về xác suất. Dạng toán 2.1 Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm (Trang 3). Dạng toán 2.1.1 Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố (Trang 3). A. Một số bài toán chọn vật, chọn người (Trang 3). B. Một số bài toán liên quan đến chữ số (Trang 8). C. Một số bài toán liên quan đến yếu tố sắp xếp (Trang 11). D. Một số bài toán liên quan đến xúc sắc (Trang 12). E. Một số bài toán liên quan đến hình học (Trang 13). F. Một số bài toán đề thi (Trang 15). Dạng toán 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp (Trang 15). Dạng toán 2.2 Sử dụng quy tắc tính xác suất (Trang 18). Dạng toán 2.2.1 Sử dụng quy tắc cộng (Trang 18). Dạng toán 2.2.2 Sử dụng quy tắc nhân (Trang 19). Dạng toán 2.2.3 Sử dụng quy tắc cộng và quy tắc nhân (Trang 20). [ads] Phần B . Lời giải tham khảo Dạng toán 1 . Mô tả không gian mẫu và mối liên hệ giữa các biến cố. Dạng toán 2 . Các dạng toán về xác suất. Dạng toán 2.1 Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm (Trang 23). Dạng toán 2.1.1 Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố (Trang 23). A. Một số bài toán chọn vật, chọn người (Trang 23). B. Một số bài toán liên quan đến chữ số (Trang 30). C. Một số bài toán liên quan đến yếu tố sắp xếp (Trang 36). D. Một số bài toán liên quan đến xúc sắc (Trang 38). E. Một số bài toán liên quan đến hình học (Trang 40). F. Một số bài toán đề thi (Trang 43). Dạng toán 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp (Trang 44). Dạng toán 2.2 Sử dụng quy tắc tính xác suất (Trang 49). Dạng toán 2.2.1 Sử dụng quy tắc cộng (Trang 49). Dạng toán 2.2.2 Sử dụng quy tắc nhân (Trang 51). Dạng toán 2.2.3 Sử dụng quy tắc cộng và quy tắc nhân (Trang 53).

Nguồn: toanmath.com

Đọc Sách

Phân dạng và bài tập chuyên đề tổ hợp - xác suất - Trần Quốc Nghĩa
Tài liệu gồm 75 trang phân dạng, hướng dẫn giải, bài tập tự luận và trắc nghiệm các dạng toán về chủ đề Tổ hợp – Xác suất (Chương 2 – Đại số và Giải tích 11) Vấn đề 1. QUI TẮC ĐẾM + Dạng 1. Sử dụng các qui tắc để thực hiện bài toán đếm số phương án + Dạng 2. Sử dụng các qui tắc để thực hiện bài toán đếm số các hình thành từ tập A Vấn đề 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP + Dạng 1. Thực hiện bài toán đếm theo hoán vị, tổ hợp, chỉnh hợp + Dạng 2. Rút gọn và tính các giá trị của biểu thức + Dạng 3. Chứng minh đẳng thức, bất đẳng thức + Dạng 4. Giải phương trình, hệ phương trình, bất phương trình Vấn đề 3. NHỊ THỨC NIU-TƠN + Dạng 1. Khai triển nhị thức Niu-tơn + Dạng 2. Giá trị của hệ số trong khai triển nhị thức Niu-tơn + Dạng 3. Tính tổng + Dạng 4. Chứng minh + Dạng 5. Giải phương trình, bất phương trình [ads] Vấn đề 4. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ + Dạng 1. Mô tả không gian mẫu. Tìm số phần tử của không gian mẫu + Dạng 2. Xác định biết cố. Tính số phần tử của tập hợp này + Dạng 3. Tính xác suất của một biến cố Vấn đề 5. CÁC QUI TẮC TÍNH XÁC SUẤT + Dạng 1. Xác định tính xung khắc, độc lập + Dạng 2. Mô tả biến cố theo các phép toán hoặc phiên dịch thành lời + Dạng 3. Tìm xác suất của một biến cố bằng cách sử dụng công thức xác suất + Dạng 4. Tìm xác suất của biến cố là hợp của các biến cố xung khắc + Dạng 5. Tìm xác suất của biến cố là giao các biến cố độc lập Vấn đề 6. [NC] BIẾN NGẪU NHIÊN RỜI RẠC + Dạng 1. Xác định tập giá trị của một biến ngẫu nhiên rời rạc + Dạng 2. Lập bảng phân phối bố xác suất của biến ngẫu nhiên rời rạc + Dạng 3. Cho bảng phân phối bố xác suất của biến ngẫu nhiên + Dạng 4. Tính kì vọng, phương sai, độ lệch chuẩn của một biến ngẫu nhiên rời rạc BÀI TẬP TỔNG HỢP CHỦ ĐỀ TỔ HỢP – XÁC SUẤT VÀ BÀI TẬP TRONG CÁC ĐỀ THI ĐH – CĐ BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ TỔ HỢP – XÁC SUẤT BẢNG ĐÁP ÁN TRẮC NGHIỆM
74 bài toán xác suất chọn lọc - Nguyễn Hữu Biển
Tài liệu gồm 26 trang.
Câu tổ hợp - xác suất cần học những gì - Lê Minh Cường
Dưới đây là các nhận xét chủ quan của tôi về các câu tổ hợp – xác suất trong đề thi những năm gần đây. Học sinh cần ôn kỹ kiến thức về các quy tắc đếm, các định nghĩa về tổ hợp – chính hợp – hoán vị; tính xác suất của biến cố đối. Về điểm thì những năm gần hơn số điểm đã giảm dần, tăng tính ứng dụng của xác suất trong thực tế. Về mức độ khó và phức tạp ở mức tăng nhẹ so với từng năm, yêu cầu học sinh cần tư duy cao, pháp hiện phương pháp phù hợp để xác định số phần tử không gian mẫu và biến cố. Ngoài ra còn các phương trình về các đại lượng tổ hợp, tìm hệ số, số hạng của nhị thức Newton học sinh cũng cần lưu ý. Tài liệu này được chia là hai phần chính: [ads] + Phần A: BÀN VỀ CÂU TỔ HỢP XÁC SUẤT TRONG CÁC ĐỀ THI + Phần B: NHỮNG VẤN ĐỀ LIÊN QUAN ĐẾN TỔ HỢP XÁC SUẤT * Bài 1: QUI TẮC CỘNG, QUI TẮC NHÂN * Bài 2: HOÁN VỊ, CHỈNH HỢP VÀ TỔ HỢP * Bài 3: NHỊ THỨC NEWTON * Bài 4: ÔN TẬP PHẦN TỔ HỢP * Bài 5: BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ Phần A là để học sinh định hình được những gì cần ôn lại cho câu Tổ hợp xác suất trong các đề thi gần nhất. Giúp học sinh hình dung tổng quát nhất về kỳ thi, ôn tập một cách hiệu quả. Phần B chỉ đóng vai trò tham khảo cho sự ôn tập của học sinh. Hãy chọn những phần trọng tâm nhất, những phần mà các bạn còn nắm chưa vững để đọc và nghiên cứu bài tập.
150 bài toán nhị thức Newton và xác suất - Lê Văn Đoàn
150 bài toán nhị thức Newton và xác suất – Lê Văn Đoàn