Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm các dạng toán ứng dụng thực tế - Đặng Việt Đông

Tài liệu gồm 168 trang với các bài toán ứng dụng thực tế có đáp án và lời giải chi tiết. Tài liệu được chia thành các phần: Phần I. Đề bài + Dạng 1: Các bài toán ứng dụng đạo hàm, GTLN – GTNN của hàm số + Dạng 2: Các bài toán ứng dụng hình đa diện + Dạng 3: Các bài toán ứng dụng hàm số mũ – lôgarit + Dạng 4: Các bài toán ứng dụng hình nón – trụ – cầu + Dạng 5: Các bài toán ứng dụng nguyên hàm – tích phân + Dạng 6: Các bài toán ứng dụng thực tế khác Phần II. Đáp án và lời giải chi tiết [ads] Trích dẫn tài liệu : + Kỳ thi THPT Quốc gia năm 2016 vừa kết thúc, Nam đỗ vào trường Đại học Bách Khoa Hà Nội. Kỳ I của năm nhất gần qua, kỳ II sắp đến. Hoàn cảnh không được tốt nên gia đình rất lo lắng về việc đóng học phí cho Nam, kỳ I đã khó khăn, kỳ II càng khó khăn hơn. Gia đình đã quyết định bán một phần mảnh đất hình chữ nhật có chu vi 50 m, lấy tiền lo cho việc học của Nam cũng như tương lai của em. Mảnh đất còn lại sau khi bán là một hình vuông cạnh bằng chiều rộng của mảnh đất hình chữ nhật ban đầu. Tìm số tiền lớn nhất mà gia đình Nam nhận được khi bán đất, biết giá tiền 1m2 đất khi bán là 1500000 VN đồng. + Người ta muốn sơn một cái hộp không nắp, đáy hộp là hình vuông và có thể tích là 4 (đơn vị thể tích)? Tìm kích thước của hộp để dùng lượng nước sơn tiết kiệm nhất. Giả sử độ dày của lớp sơn tại mọi nơi trên hộp là như nhau. A. Cạnh ở đáy là 2 (đơn vị chiều dài), chiều cao của hộp là 1 (đơn vị chiều dài) B. Cạnh ở đáy là √2 (đơn vị chiều dài), chiều cao của hộp là 2 (đơn vị chiều dài) C. Cạnh ở đáy là 2√2 (đơn vị chiều dài), chiều cao của hộp là 0,5 (đơn vị chiều dài) D. Cạnh ở đáy là 1 (đơn vị chiều dài), chiều cao của hộp là 2 (đơn vị chiều dài) + Trên một đoạn đường giao thông có 2 con đường vuông góc với nhau tại O như hình vẽ. Một địa danh lịch sử có vị trí đặt tại M, vị trí M cách đường OE 125cm và cách đường Ox 1km. Vì lý do thực tiễn người ta muốn làm một đoạn đường thẳng AB đi qua vị trí M, biết rằng giá trị để làm 100m đường là 150 triệu đồng. Chọn vị trí của A và B để hoàn thành con đường với chi phí thấp nhất. Hỏi chi phí thấp nhất để hoàn thành con đường là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Bài tập nguyên hàm, tích phân và ứng dụng - Diệp Tuân
Tài liệu gồm 301 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán trắc nghiệm nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3), các bài tập trong tài liệu đầy đủ các mức độ nhận thức: nhận biết (NB), thông hiểu (TH), vận dụng (VD) và vận dụng cao (VDC). Khái quát nội dung tài liệu bài tập nguyên hàm, tích phân và ứng dụng – Diệp Tuân: BÀI 1 . NGUYÊN HÀM. Dạng 1. Tìm họ nguyên hàm của các hàm cơ bản. Dạng 2. Sử dụng các kỹ thuật đặc biệt để tìm họ nguyên hàm của các hàm phức tạp. + Kỹ thuật 1. Nhân đa thức để tìm họ nguyên hàm có dạng tích của các đa thức. + Kỹ thuật 2. Sử dụng công thức lũy thừa để tìm họ nguyên hàm căn thức. + Kỹ thuật 3. Sử dụng công thức cộng lượng giác để tìm họ nguyên hàm của tích của các hàm lượng giác. + Kỹ thuật 4. Sử dụng công thức hạ bậc để tìm họ nguyên hàm của các hàm lượng giác có mũ bậc chẵn. + Kỹ thuật 5. Sử dụng kỹ thuật tách hạng tử, nhóm hạng tử, thêm bớt hạng tử để tìm họ nguyên hàm của các hàm phân thức hữu tỉ. BÀI 2 . CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM CƠ BẢN. Dạng 1. Phương pháp đổi biến số. Dạng 2. Phương pháp từng phần. + Loại 1. P(x) nhân sinx hoặc cosx trong đó P(x) là đa thức. + Loại 2. P(x) nhân e^(ax + b) trong đó P(x) là đa thức. + Loại 3. P(x) nhân ln(mx +  n) trong đó P(x) là đa thức. + Loại 4. e^x nhân sinx hoặc cosx. + Loại 5. Đổi biển rồi từng phần. Dạng 3. Phương pháp lấy nguyên hàm hai vế (tích phân hàm ẩn). [ads] BÀI 3 . TÍCH PHÂN. Dạng 1. Tính tích phân cơ bản. Dạng 2. Phương pháp đổi biến loại 1. Dạng 3. Phương pháp đổi biến loại 2. + Loại 1. Đổi biến hàm căn thức. + Loại 2. Đổi biến hàm lượng giác. + Loại 3. Đổi biến một số tích phân đặc biệt. Dạng 4. Phương pháp từng phần. + Bài toán 1. Tích phân từng phần thuộc dạng f(x) nhân ln(g(x)). + Bài toán 2. Tích phân từng phần thuộc dạng f(x) nhân sinax hoặc cosax hoặc e^ax. + Bài toán 3. Tích phân từng phần thuộc dạng e^ax nhân sinax hoặc cosax. BÀI 4 . ỨNG DỤNG TÍNH DIỆN TÍCH – THỂ TÍCH. Dạng 1. Tính diện tích hình phẳng giới hạn bởi một đồ thị hàm số y = f(x), trục hoành Ox và hai đường thẳng x = a, x = b. Dạng 2. Tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b. Dạng 3. Tính diện tích hình phẳng giới hạn bởi ba đồ thị hàm số. Dạng 4. Tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số có dạng x = f(y) và hai đường thẳng y = a, y = b. Dạng 5. Tính thể tích vật thể giới hạn bởi một đồ thị hàm số có dạng y = f(x), x = a, x = b và trục hoành y = 0 khi quay quanh trục hoành (Ox). Dạng 6. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x), x = a, x = b khi quay quanh trục hoành. Dạng 7. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số x = f(y), x = g(y), y = a, y = b khi quay quanh trục tung Oy. Dạng 8. Ứng dụng trong thực tế tính vận tốc, quãng đường, diện tích và thể tích vật thể.
59 bài tập tích phân hàm ẩn có lời giải chi tiết
Tài liệu gồm 27 trang tuyển chọn 59 bài tập tích phân hàm ẩn có lời giải chi tiết, đây là lớp bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong chương trình Giải tích 12 chương 3 (Nguyên hàm, Tích phân và Ứng dụng) và thường xuất hiện trong các đề thi thử THPT Quốc gia môn Toán. Trích dẫn tài liệu 59 bài tập tích phân hàm ẩn có lời giải chi tiết: + Cho hàm số f(x) xác định trên R\{-1;1} và thỏa mãn f'(x) = 1/(x^2 – 1), f(-3) + f(3) = 0 và f(-1/2) + f(1/2) = 2. Tính giá trị của biểu thức P = f(0) + f(4). + Cho hàm số liên tục trên đoạn [-ln2;ln2] và thỏa mãn f(x) + f(-x) = 1/(e^x + 1). Biết tích phân từ -ln2 đến ln2 của f(x)dx bằng aln2 + bln3 với a và b thuộc Q. Tính giá trị của P = a + b. + Xét hàm số f(x) liên tục trên đoạn [-1;2] và thỏa mãn f(x) = √(x + 2) + xf(3 – x^2). Tính giá trị tích phân từ -1 đến 2 của f(x)dx. + Cho hàm số f(x) không âm thỏa mãn điều kiện f(x).f'(x) = 2x.√(f2(x) + 1) và f(0) = 0. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [1;3] bằng? + Cho hàm số f(x) thỏa mãn f(2) = -1/25; f'(x) = 4x^3.[f(x)]^2 với mọi x thuộc R. Giá trị của f(1) là?
Hệ thống bài tập vận dụng cao, phân loại ứng dụng tích phân tính diện tích hình phẳng
Tài liệu gồm 31 trang được biên soạn bởi thầy Lương Tuấn Đức (Giang Sơn) tuyển chọn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại ứng dụng tích phân tính diện tích hình phẳng (phần 1 đến phần 15), giúp học sinh học tốt chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng và ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán. Trích dẫn hệ thống bài tập vận dụng cao, phân loại ứng dụng tích phân tính diện tích hình phẳng: + Tính diện tích S (lấy xấp xỉ) của hình phẳng giới hạn bởi trục hoành và hai đường tròn có phương trình x^2 + y^2 = 1 và x^2 + (y + 3)^2 = 25. + Tính diện tích của hình phẳng là giao của hai đường tròn có bán kính lần lượt là 2; 3 và đoạn nối tâm bằng 4 (kết quả làm tròn đến chữ số thập phân thứ hai). + Trong Công viên Toán học có những mảnh đất mang hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp trong toán học. Ở đó có một mảnh đất mang nên Bernoulli, nó được tạo thành từ đường Lemmiscate có phương trình 16y^2 = x^2(25 – x^2) như hình vẽ bên. Tính diện tính của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ tọa độ hình vẽ tương ứng với chiều dài 1m.
Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Phùng Hoàng Em
Tài liệu gồm có 31 trang được biên soạn bởi thầy giáo Phùng Hoàng Em, tuyển chọn và phân dạng các bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng, giúp học sinh rèn luyện trong quá trình học tập chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng – Phùng Hoàng Em: 1. NGUYÊN HÀM VÀ PHƯƠNG PHÁP TÍNH NGUYÊN HÀM. A SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC + Dạng 1. Áp dụng bảng công thức nguyên hàm. + Dạng 2. Tách hàm dạng tích thành tổng. + Dạng 3. Tách hàm dạng phân thức thành tổng. B SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ + Dạng 4. Đổi biến dạng hàm lũy thừa. + Dạng 5. Đổi biến dạng hàm phân thức. + Dạng 6. Đổi biến dạng hàm vô tỉ. + Dạng 7. Đổi biến dạng hàm lượng giác. + Dạng 8. Đổi biến dạng hàm mũ, hàm lô-ga-rit. + Dạng 9. Đổi biến dạng “hàm ẩn”. C SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN + Dạng 10. Nguyên hàm từng phần với ”u = đa thức”. + Dạng 11. Nguyên hàm từng phần với ”u = lôgarit”. + Dạng 12. Nguyên hàm kết hợp đổi biến số và từng phần. + Dạng 13. Nguyên hàm từng phần dạng “lặp”. + Dạng 14. Nguyên hàm từng phần dạng “hàm ẩn”. [ads] 2. TÍCH PHÂN VÀ PHƯƠNG PHÁP TÍNH TÍCH PHÂN A TÍCH PHÂN DÙNG ĐỊNH NGHĨA + Dạng 1. Sử dụng định nghĩa, tính chất tích phân. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản. B TÍCH PHÂN ĐỔI BIẾN SỐ + Dạng 4. Đổi biến loại t = u(x). + Dạng 5. Đổi biến loại x = ϕ(t) (Lượng giác hóa). + Dạng 6. Đổi biến số dạng hàm ẩn. C TÍCH PHÂN TỪNG PHẦN + Dạng 7. Tích phân từng phần với “u = đa thức”. + Dạng 8. Tích phân từng phần với “u = logarit”. + Dạng 9. Tích phân hàm ẩn. 3. ỨNG DỤNG TÍCH PHÂN. A TÍNH DIỆN TÍCH HÌNH PHẲNG + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x). + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số. + Dạng 3. Toạ độ hoá một số “mô hình” hình phẳng thực tế. B TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY + Dạng 4. Tính thể tích vật thể khi biết diện tích mặt cắt vuông góc với Ox. + Dạng 5. Tính thể tích của khối tròn xoay khi cho hình phẳng quay quanh trục Ox. 24 + Dạng 6. Bài tập tổng hợp. C MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG