Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Xin chào quý thầy cô và các bạn học sinh! Đây là đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 của trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế. Kỳ thi sẽ diễn ra vào ngày 04/06/2023. Dưới đây là một số câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2023 – 2024 của trường chuyên Quốc học Huế: 1. Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AD và trực tâm H. Gọi E là điểm trên (O) sao cho hai dây AE và BC song song với nhau. Đường thẳng EH cắt (O) tại điểm thứ hai là F và cắt đường trung trực của BC tại M. a) Chứng minh M là trung điểm của EH và AMOF là tứ giác nội tiếp. b) Chứng minh OFA + ODF = 180. c) Gọi K là điểm đối xứng với A qua O. Tiếp tuyến của (O) tại A cắt đường thẳng FK tại T. Chứng minh hai đường thẳng TH và BC song song với nhau. 2. Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 và parabol (P): y = x^2. Chứng minh với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt A và B nằm khác phía đối với trục tung. Gọi C và D lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tìm tất cả các giá trị của m để hai tam giác AOC và BOD có diện tích bằng nhau. 3. Trong một đường tròn (O) có bán kính bằng 46 cm, cho 2023 điểm bất kỳ. Chứng minh tồn tại vô số hình tròn có bán kính bằng 1 cm nằm trong đường tròn (O) và không chứa bất kỳ điểm nào trong 2023 điểm đã cho. Chúc các em học sinh thực hiện kỳ thi tốt và đạt kết quả cao trong cuộc thi. Hãy cố gắng học tập và rèn luyện để trở thành những tài năng trong lĩnh vực Toán học!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào năm 2021 2022 trường THCS Nguyễn Thị Thập TP HCM
Nội dung Đề thi thử Toán vào năm 2021 2022 trường THCS Nguyễn Thị Thập TP HCM Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2021 - 2022 trường THCS Nguyễn Thị Thập TP HCM Đề thi thử Toán vào năm 2021 - 2022 trường THCS Nguyễn Thị Thập TP HCM Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Nguyễn Thị Thập, quận 7, thành phố Hồ Chí Minh bao gồm 2 trang với tổng cộng 8 bài toán dạng tự luận. Thời gian làm bài là 120 phút (không tính thời gian phát đề). Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Nguyễn Thị Thập - TP HCM: + Các ống hút nhựa gây hại cho môi trường vì khó phân hủy. Mỗi ngày có 60 triệu ống hút được thải ra môi trường, gây hậu quả nghiêm trọng. Hiện nay, người ta đã chủ động sản xuất các loại ống hút dễ phân hủy. Tại tỉnh Đồng Tháp, có cơ sở sản xuất ống hút "thân thiện với môi trường" được xuất khẩu ra thị trường thế giới và được nhiều nước ưa chuộng. Một ống hút hình trụ có đường kính 12mm, bề dày ống 2mm và chiều dài ống 180mm. Hãy tính thể tích bột gạo cần sử dụng để sản xuất mỗi ống hút (Biết pi ≈ 3,14). + Bình và mẹ lên kế hoạch đi du lịch Huế và Hội An trong 6 ngày. Chi phí trung bình mỗi ngày tại Bà Nà là 3,000,000 đồng và tại Huế là 3,500,000 đồng. Hãy tìm số ngày nghỉ tại mỗi địa điểm, biết tổng chi phí chuyến đi là 20,000,000 đồng. + Một buổi sinh hoạt ngoại khóa có 40 học sinh tham gia, trong đó số học sinh nam nhiều hơn số học sinh nữ. Trong giờ giải lao, mỗi bạn nam mua một ly nước giá 5,000 đồng/ly và mỗi bạn nữ mua một bánh ngọt giá 8,000 đồng/cái. Tổng cộng, các bạn đưa 260,000 đồng và nhận lại 3,000 đồng tiền thối. Hỏi lớp có bao nhiêu học sinh nam và bao nhiêu học sinh nữ?
Đề thi thử Toán vào lần 1 năm 2020 2021 phòng GD ĐT Tứ Kỳ Hải Dương
Nội dung Đề thi thử Toán vào lần 1 năm 2020 2021 phòng GD ĐT Tứ Kỳ Hải Dương Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 lần 1 năm 2020 - 2021 phòng GD&ĐT Tứ Kỳ - Hải Dương Đề thi thử Toán vào lớp 10 lần 1 năm 2020 - 2021 phòng GD&ĐT Tứ Kỳ - Hải Dương Đề thi thử Toán vào lớp 10 lần 1 năm 2020 - 2021 phòng GD&ĐT Tứ Kỳ - Hải Dương là một bài thi thử giúp học sinh chuẩn bị tốt cho kỳ thi chính thức. Đề thi gồm 5 bài toán dạng tự luận, đòi hỏi học sinh phải suy nghĩ logic, có kiến thức sâu về toán học để giải quyết các vấn đề. Thời gian làm bài là 120 phút, đặt ra một thách thức đối với thí sinh. Trong đề thi có nhiều bài toán thú vị và đa dạng. Ví dụ, một bài yêu cầu học sinh viết phương trình đường thẳng đi qua hai điểm trên parabol, bài toán về công nhân làm việc cùng nhau và riêng lẻ, cũng như bài toán về hình học với đường tròn và điểm ngoài đường tròn. Đề thi chứa đựng nhiều kiến thức toán học cơ bản và nâng cao, giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và tính toán chính xác. Nhờ đó, học sinh có cơ hội phát triển toàn diện khả năng toán học của mình. Đề thi thử Toán vào lớp 10 lần 1 năm 2020 - 2021 phòng GD&ĐT Tứ Kỳ - Hải Dương không chỉ là bài kiểm tra, mà còn là cơ hội cho học sinh thử sức, nâng cao kiến thức và kỹ năng toán học của mình trước khi bước vào kỳ thi quan trọng.
Đề thi thử vào môn Toán năm 2021 2022 trường THCS Phù Linh Hà Nội
Nội dung Đề thi thử vào môn Toán năm 2021 2022 trường THCS Phù Linh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2021 2022 trường THCS Phù Linh Hà Nội Đề thi thử vào môn Toán năm 2021 2022 trường THCS Phù Linh Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đề thi thử vào lớp 10 môn Toán năm học 2021 – 2022 trường THCS Phù Linh, huyện Sóc Sơn, thành phố Hà Nội. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Đề thi sẽ diễn ra vào thứ Bảy, ngày 22 tháng 05 năm 2021. Dưới đây là một số câu hỏi trích dẫn từ đề thi thử: 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P): 2y = −x và đường thẳng (d): y = mx − m − 2 (m là tham số). Hỏi với m = −2, tọa độ giao điểm của đường thẳng (d) và parabol (P) là gì? Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm biệt có hoành độ x1, x2 thỏa mãn x1 − x2 = 20. 2. Trong tam giác ABC nhọn nội tiếp đường tròn (O; R), ba đường cao AD, BE, CF đều đi qua trực tâm H. Khi kẻ đường kính AK của đường tròn, chứng minh tứ giác BFEC nội tiếp, AB. AC = 2R.AD và MD // BK. Nếu BC là dây cung cố định của đường tròn và A di chuyển trên cung lớn BC, hãy tìm vị trí điểm A để diện tích tam giác AEH lớn nhất. 3. Cho hai số thực dương a, b thỏa mãn điều kiện a + b ≥ 3. Tìm giá trị lớn nhất của biểu thức ab/(a+b)^2. Đây là một số câu hỏi đáng chú ý trong đề thi thử vào lớp 10 môn Toán năm 2021 – 2022 trường THCS Phù Linh. Hy vọng các em sẽ làm tốt và đạt kết quả cao trong kỳ thi này!
Đề thi thử Toán vào lần 2 năm 2021 2022 trường Thái Thịnh Hà Nội
Nội dung Đề thi thử Toán vào lần 2 năm 2021 2022 trường Thái Thịnh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 lần 2 năm 2021 - 2022 trường THCS Thái Thịnh, Hà Nội Đề thi thử Toán vào lớp 10 lần 2 năm 2021 - 2022 trường THCS Thái Thịnh, Hà Nội Trước hết, chúng ta sẽ giải bài toán về thể tích của một lon nước ngọt hình trụ. Lon nước này có đường kính đáy bằng 6cm và chiều cao là 10cm. Bỏ qua bề dày của lon nước, chúng ta cần tính thể tích của nước trong lon. Để giải bài toán này, chúng ta cần sử dụng công thức tính thể tích hình trụ: \(V = \pi r^2 h\), trong đó \(r\) là bán kính đáy của hình trụ, \(h\) là chiều cao của hình trụ. Tiếp theo, chúng ta sẽ giải phương trình giữa đường thẳng và parabol trong mặt phẳng tọa độ Oxy. Đề bài yêu cầu tìm tọa độ giao điểm của hai đường thẳng (d) và (P) khi m = 3 và tìm giá trị của m để đường thẳng cắt parabol tại hai điểm với điều kiện hoành độ x1, x2 thỏa mãn phương trình đã cho. Cuối cùng, chúng ta sẽ giải bài toán liên quan đến đường tròn và các tiếp tuyến. Từ yếu tố đã cho, chúng ta cần chứng minh rằng bốn điểm A, M, O, H cùng thuộc một đường tròn, sau đó chứng minh AI.AO = AM^2. Tiếp theo, chúng ta cần chứng minh rằng NH//AC và đường thẳng MN luôn đi qua một điểm cố định.