Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 11 môn Toán năm 2017 2018 trường Thạch Thành 1 Thanh Hóa lần 2

Nội dung Đề thi KSCL lớp 11 môn Toán năm 2017 2018 trường Thạch Thành 1 Thanh Hóa lần 2 Bản PDF Đề thi KSCL Toán lớp 11 năm học 2017 – 2018 trường THPT Thạch Thành 1 – Thanh Hóa lần 2 gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 120 phút, đề thi nhằm đánh giá kiến thức môn Toán của học sinh khối 11 sau kỳ nghỉ lễ Tết Nguyên Đán 2018, đề thi có lời giải chi tiết . Trích dẫn đề thi KSCL Toán lớp 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của SC, AB, AD. 1. Tìm giao điểm của SD với mặt phẳng (ABM). 2. Dựng thiết diện của hình chóp với mặt phẳng (MNP). [ads] + Tìm m để đồ thị hàm số: y = x^4 – (3m + 1)x^2 + 2m + 3 cắt trục hoành tại 4 điểm phân biệt có hoành độ lập thành một cấp số cộng. + Cho đường tròn (C): (x – 2)^2 + (y + 3)^2 = 25 và điểm M(7; -3). 1. Tìm phương trình đường tròn (C’) là ảnh của đường tròn (C) qua phép vị tự tâm J(3; 1) tỷ số k = -3. 2. Viết phương trình đường thẳng d đi qua M cắt (C) tại hai điểm phân biệt A, B sao cho AB > 7 và diện tích tam giác IAB bằng 12. (với I là tâm của đường tròn (C)). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 11 năm 2022 - 2023 trường Tĩnh Gia 3 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán 11 năm học 2022 – 2023 trường THPT Tĩnh Gia 3, tỉnh Thanh Hóa; đề thi mã đề 111 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn Đề khảo sát chất lượng Toán 11 năm 2022 – 2023 trường Tĩnh Gia 3 – Thanh Hóa : + Ông A gửi 120 triệu đồng tiền vào ngân hàng với lãi suất 6% / năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau 10 năm, tổng số tiền mà ông A nhận được là bao nhiêu, giả định trong khoảng thời gian này lãi suất không thay đổi và ông A không rút tiền ra? (Lấy kết quả gần đúng đến hàng phần trăm). A. 215,10 triệu đồng. B. 224,10 triệu đồng. C. 234,90 triệu đồng. D. 214,90 triệu đồng. + Một chiếc ôtô với hai động cơ hoạt động độc lập đang gặp trục trặc kĩ thuật. Xác suất để động cơ I bị hỏng là 0,5. Xác suất để động cơ II bị hỏng là 0,4. Biết rằng xe chỉ không thể chạy được khi cả hai động cơ bị hỏng. Tính xác suất để xe chạy được. + Trong các quy tắc biểu diễn một hình trong không gian, quy tắc nào sau đây sai? A. Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song. B. Dùng nét vẽ liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn biểu diễn cho đường bị che khuất. C. Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng. D. Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng.
Đề thi định kỳ lần 1 Toán 11 năm 2022 - 2023 trường THPT Việt Yên 1 - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng định kỳ lần 1 môn Toán 11 năm học 2022 – 2023 trường THPT Việt Yên số 1, tỉnh Bắc Giang; đề thi mã đề 101 gồm 04 trang với 35 câu trắc nghiệm, thời gian làm bài 60 phút. Trích dẫn Đề thi định kỳ lần 1 Toán 11 năm 2022 – 2023 trường THPT Việt Yên 1 – Bắc Giang : + Cho hình chóp S.ABCD. Gọi M, N, P lần lượt là trung điểm của SC, AB và AD. Thiết diện của hình chóp với mặt phẳng (MNP) là một hình gì? A. Một tứ giác. C. Một ngũ giác. B. Một tam giác. D. Một lục giác. + Có 2 quyển sách Văn học khác nhau, 3 quyển sách Toán học khác nhau và 5 quyển sách Tiếng Anh khác nhau được xếp lên một giá sách theo hàng ngang. Tính xác suất để hai cuốn sách cùng môn không ở cạnh nhau. + Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17, tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của cập số cộng đã cho.
Đề khảo sát lần 2 Toán 11 năm 2022 - 2023 trường THPT Triệu Quang Phục - Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 2 môn Toán 11 năm học 2022 – 2023 trường THPT Triệu Quang Phục, tỉnh Hưng Yên; đề thi có đáp án mã đề 001 002 003 004 005 006 007 008 009 010 011 012. Trích dẫn Đề khảo sát lần 2 Toán 11 năm 2022 – 2023 trường THPT Triệu Quang Phục – Hưng Yên : + Một trường THPT tổ chức trao thưởng cho học sinh nghèo vượt khó, nhà trường chuẩn bị các phần thưởng là 7 quyển sổ, 8 cặp sách và 9 hộp bút (các sản phẩm cùng loại là giống nhau). Nhà trường chọn 12 bạn học sinh để trao phần thưởng sao cho mỗi học sinh đều nhận được hai phần thưởng khác loại. Trong số đó có hai bạn Hoa và Bình. Xác suất để hai bạn Hoa và Bình nhận được phần thưởng giống nhau là? + Có 2 hộp. Hộp I đựng 4 gói quà màu đỏ và 6 gói quà màu xanh. Hộp II đựng 2 gói quà màu đỏ và 8 gói quà màu xanh. Gieo một con súc sắc, nếu được mặt 6 chấm thì lấy một gói quà từ hộp I, nếu mặt khác thì lấy một gói quà từ hộp II. Tính xác suất để lấy được gói quà màu đỏ. + Cho dãy số un có 1 u d S 2 3 77. Khẳng định nào sau đây là đúng? A. S là tổng của 6 số hạng đầu của cấp số cộng. B. S là tổng của 4 số hạng đầu của cấp số cộng. C. S là tổng của 7 số hạng đầu của cấp số cộng. D. S là tổng của 5 số hạng đầu của cấp số cộng.
Đề rèn kỹ năng làm bài Toán 11 lần 2 năm 2022 - 2023 THPT Yên Thế - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi rèn luyện kỹ năng làm bài môn Toán 11 lần 2 năm học 2022 – 2023 trường THPT Yên Thế, tỉnh Bắc Giang; đề thi gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút; đề thi có đáp án mã đề 000 681 682 683 684. Trích dẫn Đề rèn kỹ năng làm bài Toán 11 lần 2 năm 2022 – 2023 THPT Yên Thế – Bắc Giang : + Khẳng định nào sau đây là đúng? A. Ta nói dãy số (un) có giới hạn −∞ khi n → +∞ nếu n u có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi. B. Ta nói dãy số (un) có giới hạn là 0 khi n dần tới vô cực, nếu n u có thể lớn hơn một số dương tùy ý, kể từ một số hạng nào đó trở đi. C. Ta nói dãy số (un) có giới hạn +∞ khi n → +∞ nếu n u có thể nhỏ hơn một số dương bất kì, kể từ một số hạng nào đó trở đi. D. Ta nói dãy số (un) có giới hạn là số a (hay n u dần tới a) khi n → +∞ nếu lim 0 (n) n u a. + Cho hình chóp tứ giác S.ABCD, có đáy ABCD là hình bình hành. Gọi M, N, I lần lượt là trung điểm của các cạnh SA, SB và BC. Thiết diện tạo bởi mặt phẳng (MNI) và hình chóp S.ABCD là: A. Hình bình hành MNIK với K là điểm trên cạnh AD mà IK//AB. B. Tam giác MNI. C. Hình thang MNIK với K là một điểm trên cạnh AD mà IK//AB D. Tứ giác MNIK với K là điểm bất kỳ trên cạnh AD. + Cho tứ diện ABCD. Gọi M N theo thứ tự là trung điểm của cạnh BC BD và G là trọng tâm tam giác ACD (hình vẽ kèm theo). Giao tuyến của hai mặt phẳng MNG và ACD là đường thẳng A. qua G và song song với BD B. qua G và song song với CD C. qua M và song song với AB D. qua N và song song với AB.