Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2021 2022 sở GD ĐT Bình Định

Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2021 2022 sở GD ĐT Bình Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Sáu ngày 18 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 năm 2021 – 2022 sở GD&ĐT Bình Định : + Rút ngẫu nhiên 8 tấm thẻ trong 20 tấm thẻ được đánh số từ 1 đến 20. Tìm xác suất để 8 tấm thẻ rút ra có 5 tấm thẻ mang số lẻ, 3 tấm thẻ mang số chẵn, trong đó có đúng 3 tầm thẻ mang số chia hết cho 3. + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là một điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M là trung điểm đoạn HC. Xác định tọa độ điểm C biết đỉnh B nằm trên đường thẳng x + y + 7 = 0. + Cho hình thoi ABCD có BAD = 60° và AB = 2a. Gọi H là trung điểm AB, trên đường thẳng d vuông góc với mặt phẳng (ABCD) tại H lấy điểm S thay đổi khác H. Tính SH khi góc giữa SC và mặt phẳng (SAD) có số đo lớn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 11 môn Toán năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình
Nội dung Đề thi HSG lớp 11 môn Toán năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình Bản PDF Đề thi HSG Toán lớp 11 năm học 2018 – 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình mã đề 001 gồm 3 trang, đề gồm 20 câu hỏi và bài toán trắc nghiệm (chiếm 6 điểm) và 4 bài toán tự luận (chiếm 4 điểm), thời gian làm bài 90 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 11 giỏi môn Toán để bổ sung vào đội tuyển HSG Toán lớp 11 của nhà trường. Trích dẫn đề thi HSG Toán lớp 11 năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình : + Cho hình chóp S.ABCD với đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm các cạnh SA, SB Gọi M là điểm bất kì trên cạnh BC (không trùng với B, C). Thiết diện của mặt phẳng (MEF) với hình chóp S.ABCD là: A. Hình tam giác. B. Hình bình hành. C. Hình thoi. D. Hình thang. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, biết SA vuông góc với mặt phẳng (ABCD). Biết góc giữa hai mặt phẳng (SBC) và (SAD) bằng 45 độ. Gọi E, M lần lượt là trung điểm của SC và SA. Tính khoảng cách giữa hai đường thẳng DM và BE. + Số phương trình tiếp tuyến của đồ thị hàm số y = x^3/3 – 2x^2 + 3x + 1, biết tiếp tuyến song song với đường thẳng d: y = 8x – 97/3 và cắt trục hoành tại điểm có hoành độ dương là? File WORD (dành cho quý thầy, cô):
Đề thi HSG lớp 11 môn Toán năm 2019 cụm trường THPT chuyên DH ĐB Bắc Bộ
Nội dung Đề thi HSG lớp 11 môn Toán năm 2019 cụm trường THPT chuyên DH ĐB Bắc Bộ Bản PDF Ngày 20 tháng 04 năm 2019, cụm các trường THPT chuyên khu vực Duyên hải và Đồng bằng Bắc Bộ liên kết tổ chức kỳ thi giao lưu học sinh giỏi Toán lớp 11 lần thứ 12 năm học 2018 – 2019. Đề thi HSG Toán lớp 11 năm 2019 cụm trường THPT chuyên DH&ĐB Bắc Bộ được biên soạn theo dạng đề tự luận với 5 bài toán, đề thi gồm 1 trang, học sinh làm bài trong khoảng thời gian 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi HSG Toán lớp 11 năm 2019 cụm trường THPT chuyên DH&ĐB Bắc Bộ : + Cho tam giác ABC có đường tròn nội tiếp (I) tiếp xúc với BC, CA, AB ở D, E, F. Đường thẳng qua A song song BC cắt DE, DF lần lượt tại M, N. Đường tròn ngoại tiếp tam giác DMN cắt đường tròn (I) tại điểm L khác D. a) Chứng minh A, K, L thẳng hàng. b) Tiếp tuyến với đường tròn ngoại tiếp tam giác DMN tại M, N cắt EF tại U, V. Chứng minh rằng đường tròn ngoại tiếp tam giác UVL tiếp xúc với đường tròn ngoại tiếp tam giác DMN. [ads] + Cho đa giác lồi n đỉnh A0A1 … An-1 (n ≥ 2). Mỗi cạnh và đường chéo của đa giác được tô bởi một trong k màu sao cho không có hai đoạn thẳng nào cùng xuất phát từ một đỉnh cùng màu. Tìm giá trị nhỏ nhất của k. + Cho p là số nguyên tố có dạng 12k + 11. Một tập con S của tập M = {1; 2; 3 … p – 2; p – 1} được gọi là “tốt” nếu như tích của tất cả các phần tử của S không nhỏ hơn tích của tất cả các phần tử của M\S. Ký hiệu ΔS hiệu của hai tích trên. Tìm giá trị nhỏ nhất của số dư khi chia ΔS cho p xét trên mọi tập con tốt của M có chứa đúng (p – 1)/2 phần tử. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG lớp 11 môn Toán THPT năm học 2018 – 2019 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi chọn HSG lớp 11 môn Toán THPT năm học 2018 – 2019 sở GD ĐT Vĩnh Phúc Bản PDF Thứ Ba ngày 09 tháng 04 năm 2019, sở Giáo dục và Đào tạo Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi lớp 11 THPT môn Toán năm học 2018 – 2019, đề thi được biên soạn theo hình thức tự luận với 10 bài toán, học sinh làm bài trong 180 phút. Trích dẫn đề thi chọn HSG Toán lớp 11 THPT năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc : + Một tấm vải hình chữ nhật được cuốn 100 vòng (theo chiều dài tấm vải) quanh một lõi hình trụ có bán kính đáy bằng 5cm sao cho mép vải luôn song song với trục của hình trụ. Biết rằng bề dày tấm vải là 0,3cm. Tính chiều dài tấm vải đó. [ads] + Chứng minh rằng phương trình 4x^5 + 2018x + 2019 = 0 có duy nhất một nghiệm thực. + Từ 2018 số nguyên dương đầu tiên lấy ra 6 số xếp thành 1 dãy số có dạng a1, a2, a3, a4, a5, a6. Hỏi có bao nhiêu dãy số dạng trên biết a1, a2, a3 theo thứ tự lập thành một cấp số cộng.
Đề thi chọn HSG lớp 11 môn Toán năm 2018 – 2019 trường THPT Thị xã Quảng Trị
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm 2018 – 2019 trường THPT Thị xã Quảng Trị Bản PDF Ngày 03 tháng 04 năm 2019, trường THPT Thị xã Quảng Trị (146 Hai Bà Trưng, Thị xã Quảng Trị, tỉnh Quảng Trị) tổ chức kỳ thi năm học sinh giỏi văn hóa môn Toán lớp 11 năm học 2018 – 2019, những em được chọn sẽ được đưa vào đội tuyển học sinh giỏi Toán lớp 11 của nhà trường để tiếp tục được bồi dưỡng, đồng thời được tuyên dương và khen thưởng, nhằm tạo động lực và nâng cao chất lượng học tập. Đề thi chọn HSG Toán lớp 11 năm 2018 – 2019 trường THPT Thị xã Quảng Trị được biên soạn theo hình thức tự luận, đề gồm 01 trang với 06 bài toán, bài thi có thang điểm 20, học sinh làm bài thi trong thời gian 180 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi chọn HSG Toán lớp 11 năm 2018 – 2019 trường THPT Thị xã Quảng Trị : + Cho x1 và x2 là hai nghiệm của phương trình: x^2 – 3x + a = 0, x3 và x4 là hai nghiệm của phương trình: x^2 – 12x + b = 0. Biết rằng x1, x2, x3, x4 theo thứ tự lập thành một cấp số nhân. Hãy tìm a, b. + Cho tứ diện ABCD có tam giác ABC đều cạnh bằng a và tam giác BCD cân tại D với DC = a√5/2. 1. Chứng minh rằng: AD vuông góc BC. 2. Gọi G là trọng tâm tam giác BCD, tính cosin góc giữa hai đường thẳng AG và CD, biết góc giữa hai mặt phẳng (ABC) và (BCD) bằng 30 độ. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;1), B(1; 2), trọng tâm G của tam giác nằm trên đường thẳng x + y – 2 = 0. Tìm tọa độ đỉnh C biết diện tích tam giác ABC bằng 27/2. File WORD (dành cho quý thầy, cô):