Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập mặt nón, mặt trụ và mặt cầu từ cơ bản đến vận dụng cao

Tài liệu gồm 57 trang, được biên soạn bởi: Ths. Lê Văn Đoàn, Nguyễn Đức Nam, Đỗ Minh Tiến, Trần Như Cang, Hoàng Minh Thiện, Trần Quốc Tuấn, tuyển chọn các bài tập mặt nón, mặt trụ và mặt cầu từ cơ bản đến vận dụng cao, giúp học sinh lớp 12 rèn luyện khi học chương trình Hình học 12 chương 2. MỤC LỤC : MẶT NÓN, MẶT TRỤ, MẶT CẦU CƠ BẢN 1. Bài 1. Mặt nón cơ bản 1. Dạng toán 1. Xác định các yếu tố cơ bản của khối nón 1. Dạng toán 2. Khối nón nội tiếp, ngoại tiếp khối đa diện 4. Bài 2. Mặt trụ cơ bản 7. Dạng toán 1. Xác định các yếu tố cơ bản của khối trụ 7. + Nhóm bài toán diện tích xung quanh, diện tích toàn phần và thể tích 7. + Nhóm bài toán thiết diện 8. + Nhóm bài toán xoay hình 11. + Nhóm bài toán thực tế 13. Dạng toán 2. Hình trụ ngoại tiếp, nội tiếp khối đa diện, khối nón 14. Bài 3. Mặt cầu cơ bản 16. Dạng toán 1. Xác định các yếu tố cơ bản của khối cầu 16. Dạng toán 2. Mặt cầu nội tiếp, ngoại tiếp hình trụ 18. Dạng toán 3. Mặt cầu ngoại tiếp khối đa diện 19. VẬN DỤNG, VẬN DỤNG CAO NÓN TRỤ VÀ CẦU 23. Dạng toán 1. Bài toán thiết diện 23. + Nhóm 1. Thiết diện qua đỉnh của khối nón 23. + Nhóm 1. Thiết diện song song với trục của khối trụ 26. Dạng toán 2. Bài toán xoay hình tạo khối tròn xoay 29. Dạng toán 3. Bài toán thực tế liên quan đến nón trụ cầu 33. Dạng toán 4. Khối nón nội tiếp, ngoại tiếp khối trụ, khối cầu, khối đa diện 37. Dạng toán 5. Khối cầu ngoại tiếp khối đa diện 45. + Nhóm 1. Hình chóp có cạnh bên vuông góc với đáy 45. + Nhóm 2. Hình chóp đều 46. + Nhóm 3. Hình chóp có mặt bên vuông góc với mặt đáy 48. + Nhóm 4. Hình lập phương, hình hộp hộp chữ nhật và lăng trụ 50. Dạng toán 6. Bài toán cực trị trong nón trụ cầu 52.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và một số bài tập cơ bản về thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 32 trang tổng hợp lý thuyết, công thức giải và một số bài tập thể tích khối đa diện có lời giải chi tiết tương tự các bài toán trong đề minh họa lần 3 của Bộ GD và ĐT. A. Lý thuyết Phần 1. Khối đa diện, tính chất và cách dựng Nêu khái niệm, hình dạng và tính chất của các khối hình: tứ diện, hình chóp, hình lăng trụ, hình hộp, hình chóp tam giác đều, hình chóp tứ giác đều, hình lăng trụ đứng, hình hộp đứng, hình hộp chữ nhật, hình lập phương. [ads] Phần 2. Kỹ năng góc và khoảng cách Nắm vững kỹ năng xác định góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. Kỹ năng xác định khoảng cách từ một điểm đến đường thẳng, khoảng cách từ điểm đến mặt phẳng, khoảng cách giữa hai đường thẳng chéo nhau. Phần 3. Các kết quả và tính chất quan trọng cần lưu ý Các hệ quả rút ra hỗ trợ cho việc giải toán về thể tích khối đa diện B. Bài tập trắc nghiệm thể tích khối đa diện có đáp án và lời giải chi tiết
Bài tập tỷ số thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 15 trang trình bày phương pháp, ví dụ mẫu có lời giải chi tiết và bài tập rèn luyện về dạng toán tỷ số thể tích khối đa diện. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm cạnh SA. Mặt phẳng (α) qua M và song song với (ABCD), cắt các cạnh SB, SC, SD lần lượt tại N, P, Q. Gọi V1 = VS.ABCD và V2 = VS.MNPQ. Khẳng định nào sau đây đúng? A. V1 = 8V2 B. V1 = 6V2 C. V1 = 16V2 D. V1 = 4V2 [ads] + Cho khối lăng trụ tam giác ABC.A’B’C’, đường thẳng đi qua trọng tâm tam giác ABC song song với BC cắt AB tại D, cắt AC tại E. Mặt phẳng đi qua A, D, E’ chia khối lăng trụ thành hai phần, tỉ số thể tích (số bé chia cho số lớn) của chúng bằng? + Cho tứ diện ABCD. Gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ diện AB’C’D và khối tứ diện ABCD bằng?
86 bài tập trắc nghiệm thể tích khối chóp có đáp án - Bùi Thái Nam
Tài liệu gồm 9 trang với 86 bài toán trắc nghiệm thuộc chuyên đề thể tích khối chóp có đáp án. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 16 cm, AD = 30 cm và hình chiếu của S trên (ABCD) trùng với giao điểm hai đường chéo AC, BD. Biết rằng mặt phẳng (SCD) tạo với mặt đáy một góc φ sao cho cosφ = 5/13. Tính thể tích khối chóp S.ABCD. [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = AC = a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy một góc bằng 60 độ. Thể tích khối chóp S.ABC là? + Cho hình chóp S.ABC có tam giác ABC vuông tại A , AB = AC = a, I là trung điểm của SC, hình chiếu vuông góc của S lên mặt phẳng ( ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy 1 góc bằng 60 độ. Thể tích khối chóp S.ABC là?
Bài tập trắc nghiệm thể tích khối đa diện và khoảng cách có lời giải chi tiết - Phạm Văn Huy
Tài liệu gồm 120 trang, với các bài toán trắc nghiệm thuộc chuyên đề thể tích khối đa diện và khoảng cách, các bài toán có đáp án và lời giải chi tiết. + Chủ đề 1. Thể tích (Gồm 113 bài toán) + Chủ đề 2. Khoảng cách (Gồm 31 bài toán) + Chủ đề 3. Mặt trụ – Hình trụ – Khối trụ (Gồm 40 bài toán) + Chủ đề 4. Mặt cầu – Hình cầu – Khối cầu (Gồm 44 bài toán) [ads] Trích dẫn tài liệu : + Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, G là trọng tâm tam giác ABC, SG ⊥ (ABC). Biết góc giữa SM và mặt phẳng (ABC) bằng 30 độ (với M là trung điểm của BC), BC = 2a và AB = 5a. Tính 9V/a^3 với V là thể tích khối chóp S.ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a. Cạnh bên SA vuông góc với mặt phẳng đáy, SC tạo với mặt phẳng đáy một góc 45 độ và SC = 2a√2. Thể tích khối chóp S.ABCD bằng? + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy góc 60 độ. Gọi M là điểm đối xứng với C qua D và N là trung điểm của SC. Tính tỉ số thể tích giữa hai phần của hình chóp do mặt phẳng (BMN) tạo ra khi cắt hình chóp.