Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 16 tháng 02 năm 2023; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán Thực Chiến). Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Hai người thợ, nếu cùng làm chung một công việc thì sau 15 giờ sẽ xong. Nếu người thứ nhất làm một mình trong 3 giờ rồi nghỉ, sau đó người thứ hai làm tiếp trong 5 giờ thì cả hai người làm được 1/4 công việc. Hỏi nếu làm một mình thì mỗi người cần bao lâu sẽ xong công việc đó? + Cho phương trình: x2 + 5x + k − 2 = 0 (k là tham số) (1). a) Giải phương trình (1) khi k = −4. b) Tìm điều kiện của tham số k để phương trình (1) có hai nghiệm phân biệt. + Cho đường tròn (O) có dây AB không là đường kính, gọi D là điểm thuộc tia đối của tia AB. Kẻ đường kính PQ của đường tròn (O) vuông góc với dây AB tại C (P thuộc cung lớn AB). Tia DP cắt đường tròn (O) tại điểm M (M khác P), các đường thẳng AB và QM cắt nhau tại K. a) Chứng minh bốn điểm P, C, K, M cùng thuộc một đường tròn. b) Kẻ tiếp tuyến DE của đường tròn (O) (E là tiếp điểm và E thuộc nửa mặt phẳng bờ AB chứa điểm P). Chứng minh DM.DP = DE2. c) Cho ba điểm A, B, D cố định, gọi F là giao điểm của PK và QD. Chứng minh khi đường tròn (O) thay đổi nhưng vẫn đi qua hai điểm A và B thì DK.DC = DE2 và KP.KF không đổi.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2023 - 2024 phòng GDĐT Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Đông Anh, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Đông Anh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một người đi xe đạp từ A đến B cách nhau 24 km. Khi từ B về A người đó tăng vận tốc thêm 4 km/h so với lúc đi. Vì vậy thời gian về ít hơn thời gian đi là 30 phút. Tính vận tốc của người đi xe đạp đó, khi đi từ A đến B. + Một hộp sữa Ông Thọ hình trụ có chiều cao là 8cm và bán kính đáy là 3,5 cm. Nhà sản xuất đã dán giấy xung quanh hộp sữa để ghi các thông tin về sản phẩm. Hãy tính diện tích giấy cần dùng cho 1 hộp sữa. (Coi mép giấy dán, các mép của hộp sữa và độ dày của giấy in không đáng kể). + Cho đường tròn (O), đường kính AB. Dây CD vuông góc với đường kính AB tại H (H khác O, A và B). E là một điểm thuộc cung nhỏ BD (E khác B và D); AE cắt CD tại F. 1) Chứng minh: Tứ giác BEFH nội tiếp đường tròn. 2) Chứng minh: H là trung điểm của CD và CD2 = 4.AH.HB. 3) Đường thẳng đi qua H song song với CE cắt đường thẳng AE và BE lần lượt tại I và K. Lấy G là trung điểm của đoan thẳng IK. Hỏi tam giác DGK có là tam giác cân được hay không?
Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Hà Đông – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai bạn Linh và Chi ở hai địa điểm cách nhau 18km đạp xe đi ngược chiều nhau để gặp nhau. Nếu hai bạn khởi hành cùng một lúc thì sẽ gặp nhau sau 40 phút. Nhưng nếu Linh khởi hành trước 18 phút thì các bạn sẽ gặp nhau sau 30 phút tính từ lúc Chi bắt đầu đi. Tính vận tốc của mỗi bạn? + Một chiếc cốc có dạng hình trụ với chiều cao 8cm, bán kính đáy là 3cm. Hỏi chiếc cốc này có đựng được 200ml sữa không? (Lấy pi = 3,14 và bỏ qua bề dày của chiếc cốc). + Từ điểm A ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến ADE thuộc nửa mặt phẳng bờ là đường thẳng OA không chứa điểm B của đường tròn (O). Gọi H là giao điểm của OA và BC. 1) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. 2) Chứng minh AO vuông góc BC tại H và AH.AO = AD.AE. 3) Đường thẳng đi qua điểm D và song song với đường thẳng BE cắt AB, BC lần lượt tại I, K. Chứng minh tứ giác OHDE nội tiếp và D là trung điểm của IK.
Đề khảo sát Toán 9 năm 2023 - 2024 phòng GDĐT Yên Định - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Định, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Yên Định – Thanh Hóa : + Cho hàm số bậc nhất y = (m + 1)x + 2m – 5. Với giá trị nào của m thì đồ thị của hàm số trên cắt trục hoành tại điểm có hoành độ bằng -1. + Tìm m để phương trình: x2 + 5x + 3m – 1 = 0 (x là ẩn, m là tham số) có hai nghiệm x1, x2 thỏa mãn x13 – x23 + 3x1x2 = 75. + Cho đường tròn (O; R) và một đường thẳng d không có điểm chung với đường tròn. Trên d lấy một điểm M bất kì, qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Kẻ cát tuyến MDE (D nằm giữa M và E, cắt bán kính OA). Gọi I là trung điểm DE. 1. Chứng minh tứ giác MAIO nội tiếp. 2. Gọi T là giao điểm của AB với MI. Chứng minh IA/IB = TA/TB. 3. Tìm giá trị nhỏ nhất của dây AB và diện tích MAOB nhỏ nhất.
Đề khảo sát Toán 9 năm 2023 - 2024 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Ninh Giang, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Ninh Giang – Hải Dương : + Một công ty vận tải điều một số xe tải đến kho hàng để chở 80 tấn hàng. Khi đến kho hàng thì có 2 xe bị hỏng nên để chở hết lượng hàng đó, mỗi xe phải chở thêm 2 tấn so với dự định ban đầu. Hỏi lúc đầu công ty đã điều đến kho hàng bao nhiêu xe. Biết rằng khối lượng hàng chở ở mỗi xe là như nhau. + Một con thuyền xuất phát từ điểm A, dự định đi đến bờ bên kia của một con sông. Do dòng nước chảy nên con thuyền không đi theo hướng vuông góc với bờ sông được. Lần thứ nhất, con thuyền đi theo hướng AB, lần thứ hai con thuyền đi theo hướng AC. Tính chiều rộng h của con sông biết rằng góc tạo bởi hướng đi của con thuyền với bờ sông ở các lần đi thứ nhất, thứ hai lần lượt là 500 400 (hình vẽ) và độ dài BC là 25m (Kết quả làm tròn đến mét). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O; R). Các tiếp tuyến tại B và C với đường tròn cắt nhau tại N, NO cắt BC tại H. Qua A kẻ đường thẳng song song với BC cắt đường tròn tại điểm thứ hai là M. a) Chứng minh tứ giác BOCN nội tiếp. b) Đường thẳng AH cắt (O) tại K (K ≠ A).Chứng minh HA.HK = HB2 và ba điểm N, M, K thẳng hàng.