Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2023 2024 sở GD ĐT Bình Phước

Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2023 2024 sở GD ĐT Bình Phước Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 04 tháng 11 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2023 – 2024 sở GD&ĐT Bình Phước : + Gọi S là tập hợp các số tự nhiên có 5 chữ số đôi một khác nhau và các chữ số này được lấy từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ tập S, tính xác suất để số được chọn là số chẵn trong đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp tứ giác đều S.ABCD có O là giao điểm của AC và BD. Biết SO a 2 góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 0 45. a) Tính thể tích khối chóp S.ABCD theo a. b) Gọi K là điểm di động trong mặt phẳng (ABCD). Tìm SAK để biểu thức SA AK T SK đạt giá trị lớn nhất. + Cho hình trụ có đường kính đáy bằng 4 5. Một mặt phẳng không vuông góc với đáy và cắt hai đáy theo hai dây cung song song MN M N thoả mãn MN M N 8 4. Biết rằng tứ giác MNN M có diện tích bằng 54. Tính thể tích khối trụ đã cho.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lớp 12 môn Toán năm 2023 2024 trường THPT Yên Phong 2 Bắc Ninh
Nội dung Đề học sinh giỏi lớp 12 môn Toán năm 2023 2024 trường THPT Yên Phong 2 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 12 năm học 2023 – 2024 trường THPT Yên Phong số 2, tỉnh Bắc Ninh; đề thi hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề), có đáp án mã đề 001 002 003 004 005 006. Trích dẫn Đề học sinh giỏi Toán lớp 12 năm 2023 – 2024 trường THPT Yên Phong 2 – Bắc Ninh : + Một cốc nước có dạng hình trụ đựng nước, chiều cao 12 cm, đường kính đáy 4 cm, lượng nước trong cốc cao 8 cm. Thả vào cốc nước 4 viên bi có cùng đường kính 2 cm. Hỏi nước dâng cao cách mép cốc bao nhiêu cm? (làm tròn sau dấu phẩy hai chữ số thập phân, bỏ qua độ dày của cốc). + Một hòn đảo ở vị trí C cách bờ biển d một khoảng BC = 4km. Trên bờ biển d người ta xây một nhà máy điện tại vị trí A. Để kéo đường dây điện ra ngoài đảo, người ta đặt một trụ điện ở vị trí S trên bờ biển (như hình vẽ). Biết rằng khoảng cách từ B đến A là 16km, chi phí để lắp đặt mỗi km dây điện dưới nước là 20 triệu đồng và lắp đặt ở đất liền là 12 triệu đồng. Hỏi trụ điện cách nhà máy điện một khoảng bao nhiêu để chi phí lắp đặt thấp nhất? + Cho ba hình tam giác đều cạnh bằng a chồng lên nhau như hình vẽ (cạnh đáy của tam giác trên đi qua các trung điểm hai cạnh bên của tam gác dưới). Tính theo a thể tích của khối tròn xoay tạo thành khi quay chúng xung quanh đường thẳng d.
Đề học sinh giỏi tỉnh lớp 12 môn Toán năm 2023 2024 sở GD ĐT Quảng Bình
Nội dung Đề học sinh giỏi tỉnh lớp 12 môn Toán năm 2023 2024 sở GD ĐT Quảng Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 05 tháng 12 năm 2023; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề học sinh giỏi tỉnh Toán lớp 12 năm 2023 – 2024 sở GD&ĐT Quảng Bình : + Tìm tất cả các giá trị của tham số m để đường thẳng d y x m cắt đồ thị C của hàm số 2 1 1 x y x tại hai điểm phân biệt A B sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Tìm tất cả các giá trị của tham số m để đồ thị hàm số 3 2 y x mx 3 1 có hai điểm cực trị A và B sao cho tam giác ABE có diện tích bằng 4, với tọa độ điểm E(2;1). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Gọi M là trung điểm cạnh AB và điểm N thuộc cạnh AD sao cho AD AN 4. Biết SA a MN vuông góc với SM và tam giác SMC cân tại S. a) Tính thể tích của khối chóp S.CMN theo a. b) Tính khoảng cách giữa hai đường thẳng SA và MC theo a.
Đề học sinh giỏi lớp 12 môn Toán năm 2023 2024 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề học sinh giỏi lớp 12 môn Toán năm 2023 2024 trường chuyên Lê Hồng Phong Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 12 năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm và 20 câu viết đáp án, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán lớp 12 năm 2023 – 2024 trường chuyên Lê Hồng Phong – Nam Định : + Cho hàm đa thức y fx y gx có đồ thị là hai đường cong ở hình bên dưới. Biết rằng đồ thị hàm số y gx có đúng một điểm cực trị A, đồ thị y fx có đúng một điểm cực trị B và AB = 4 (AB vuông góc trục Ox). Tính tổng tất cả các giá trị nguyên của tham số m để hàm số y f x gx m có số điểm cực trị lớn nhất. + Chọn ngẫu nhiên bốn số tự nhiên khác nhau từ 70 số nguyên dương đầu tiên. Tính xác suất để bốn số được chọn lập thành một cấp số nhân có công bội nguyên. + Cho tập A = {1; 2; 3; 4; 5; 6}. Gọi S là tập hợp tất cả các tam giác có độ dài ba cạnh là các phần tử của A. Chọn ngẫu nhiên một phần tử thuộc S. Xác suất để phần tử được chọn là một tam giác có độ dài ba cạnh phân biệt bằng? File WORD (dành cho quý thầy, cô):
Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2023 2024 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2023 2024 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Ba ngày 19 tháng 12 năm 2023. Trích dẫn Đề học sinh giỏi Toán lớp 12 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Bà Rịa – Vũng Tàu : + Gọi S là tập hợp tất cả ước nguyên dương của số a = 648000. Chọn ngẫu nhiên hai phần tử khác nhau của S. Tính xác suất để hai số được chọn đều không chia hết cho 3. + Cho hàm số y có đồ thị (C) và đường thẳng (d): y = −3x + m. Tìm tất cả giá trị thực của tham số m để (d) cắt (C) tại hai điểm A, B và (d) lần lượt cắt trục hoành, trục tung tại hai điểm C, D mà diện tích tam giác OCD gấp đôi diện tích tam giác OAB (trong đó O là gốc tọa độ). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O và AB = 2a, AD = a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm H của OA. Gọi M, N lần lượt là trung điểm của SB, AD. Biết rằng góc giữa hai mặt phẳng (SBC) và (ABCD) là 45. 1. Tính thể tích khối chóp S.ABCD. 2. Cho điểm Q trên đoạn thẳng SA mà QS = 2QA. Tính thể tích khối đa diện ABCNQM. 3. Tính khoảng cách giữa hai đường thẳng SN, CM.