Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.

Nguồn: toanmath.com

Đọc Sách

Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 2021)
Nội dung Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 2021) Bản PDF - Nội dung bài viết Sản phẩm toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017-2021) Sản phẩm toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017-2021) Tài liệu "Toàn cảnh đề thi tốt nghiệp THPT môn Toán" được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, bao gồm 880 trang tổng hợp và phân loại theo chuyên đề các dạng toán trong các đề thi tốt nghiệp THPT môn Toán từ năm học 2016 – 2017 đến năm học 2020 – 2021. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. Danh sách chuyên đề bao gồm: D09 – 1.9 Chứng minh bất đẳng thức (dùng nhiều phương pháp) – Mức độ 3 D02 – 5.2 Giải bất phương trình bậc hai và bài toán liên quan – Mức độ 4 D01 – 1.1 Quy tắc cộng – Mức độ 1 ... (có nhiều chuyên đề khác) Tài liệu này là công cụ hữu ích giúp học sinh hiểu rõ các dạng toán phổ biến xuất hiện trong đề thi tốt nghiệp THPT môn Toán. Nó giúp họ rèn luyện kỹ năng giải quyết các bài toán đa dạng, từ mức độ dễ đến khó, từ các chuyên đề cơ bản đến nâng cao. Việc ôn tập thông qua tài liệu này giúp học sinh tự tin hơn khi bước vào kỳ thi quan trọng.
Phát triển các bài toán VD VDC trong đề thi TN THPT 2021 môn Toán (đợt 1)
Nội dung Phát triển các bài toán VD VDC trong đề thi TN THPT 2021 môn Toán (đợt 1) Bản PDF - Nội dung bài viết Phát triển bài toán VD VDC trong đề thi TN THPT 2021 môn Toán Phát triển bài toán VD VDC trong đề thi TN THPT 2021 môn Toán Strong Team Toán VD – VDC đã biên soạn tài liệu gồm 43 trang phát triển bài toán mức độ vận dụng – vận dụng cao trong đề thi chính thức tốt nghiệp Trung học Phổ thông năm 2021 môn Toán (đợt 1) – mã đề 101. Tài liệu này bao gồm các câu hỏi từ câu 36 đến câu 50, đề cập đến các bài toán phức tạp và thú vị. Trích dẫn một số bài toán trong tài liệu: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P: x/2 + y/2 + z/15 = 0. Gọi M là điểm di động trên P, N là điểm thuộc tia OM sao cho OM = ON = 10. Khoảng cách nhỏ nhất từ N đến mặt phẳng P bằng bao nhiêu? Cho hai hàm số f(x) = 4x^2 + ax + b và g(x) = cx^3 + dx^2 + 3. Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại hai điểm có hoành độ lần lượt là -2 và 1. Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng bao nhiêu? Trong tập số phức, cho phương trình m^2z^2 + m^3z - m = 0. Có bao nhiêu giá trị nguyên của m trong đoạn [0, 2021] để phương trình có 2 nghiệm phân biệt z1 và z2 thỏa mãn z1 + z2 = 1? Cho hình trụ đứng có hai đáy là hai đường tròn tâm O và tâm O', bán kính bằng a, chiều cao hình trụ bằng 2a. Mặt phẳng đi qua trung điểm OO' và tạo với OO' một góc 30 độ, cắt đường tròn đáy tâm O theo dây cung AB. Độ dài đoạn AB là bao nhiêu? Tài liệu này không chỉ hữu ích cho các em học sinh tham dự kỳ thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 mà còn giúp các thầy cô giáo tham khảo và sử dụng trong các năm học sau.
Phát triển các câu VD VDC trong đề tham khảo TN THPT 2021 môn Toán
Nội dung Phát triển các câu VD VDC trong đề tham khảo TN THPT 2021 môn Toán Bản PDF - Nội dung bài viết Tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán Tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán Tài liệu này gồm 60 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam. Cùng nhau, họ phân tích, định hướng tìm lời giải và xây dựng các bài toán tương tự các câu vận dụng – vận dụng cao trong đề thi tham khảo tốt nghiệp THPT năm 2021 môn Toán (câu 41 – câu 50). Trích dẫn tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán: + Đây là bài toán tính tích phân của hàm hợp. Để tính được tích phân trên ta phải thực hiện phép đổi biến để đưa về hàm đã cho. Cụ thể các bước thực hiện như sau: Bước 1: Đặt 2sin(1/x) = t. Bước 2: Biểu thị cos(x)dx = dt. Bước 3: Đổi cận và tính tích phân từ a đến b f(t)dt. Đây là dạng toán thuộc mức độ vận dụng, việc nhận ra hướng giải đòi hỏi học sinh phải nắm chắc các khái niệm và tính chất của tích phân cũng như các phương pháp tính tích phân. + Hướng phát triển: Xét các số phức thỏa mãn điều kiện (cho một giả thiết về modun, một giả thiết về số thuần ảo/ số thực) đưa về phương trình hoặc hệ phương trình. Nếu cho giả thiết số thuần ảo thì chỉ cần xác định phần thực và cho bằng 0. Nếu cho giả thiết là số thực thì chỉ cần xác định phần ảo và cho bằng 0. + Bài toán trên là bài toán về tính thể tích khối chóp liên quan góc giữa một đường thẳng và mặt phẳng. Thông thường đề bài hay cho góc giữa một cạnh bên và mặt đáy của hình chóp liên quan đến chân đường cao của hình chóp, tức hình chiếu của đường thẳng lên mặt phẳng tương đối dễ xác định, thì dạng bài này đề lại cho góc giữa một đường thẳng và mặt phẳng mà tương đối khó xác định hình chiếu của đường lên mặt hơn. Khi xác định được góc giữa đường thẳng và mặt phẳng suy ra độ dài đường cao, từ đó tính thể tích khối chóp. Để làm tốt được bài tập dạng này các em cần nắm chắc phương pháp xác định góc giữa đường thẳng và mặt phẳng.
Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh
Nội dung Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh Bản PDF - Nội dung bài viết Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh Tài liệu Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán do thầy giáo Huỳnh Văn Ánh biên soạn bao gồm 239 trang. Tài liệu này tập trung vào việc giới thiệu kiến thức cần ghi nhớ và chọn lọc các bài tập trắc nghiệm từ 50 dạng toán khác nhau được phát triển từ đề tham khảo (đề minh họa) thi tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo. Cụ thể, tài liệu này chia các dạng toán theo cấp độ từ lớp 1 đến lớp 50, bao gồm nhiều chủ đề khác nhau. Đầu tiên là dạng toán về phép đếm, hoán vị, chỉnh hợp và tổ hợp cho học sinh lớp 1. Tiếp theo là các dạng toán khó hơn như cực trị, tiệm cận, nhận dạng đồ thị, giá trị lớn nhất/nhỏ nhất, bất phương trình, xác suất, số phức, tích phân, và nhiều chủ đề khác từ lớp 2 đến lớp 50. Đặc biệt, tài liệu cũng tập trung vào việc giải quyết các bài toán ứng dụng thực tế để giúp học sinh áp dụng kiến thức toán học vào cuộc sống hàng ngày. Ngoài ra, tài liệu cũng giúp học sinh rèn luyện kỹ năng giải toán, tư duy logic và cải thiện kỹ năng làm bài thi tốt nghiệp THPT. Với sự chăm chỉ học tập và ôn luyện theo tài liệu này, học sinh sẽ cải thiện khả năng làm toán, tự tin hơn khi đối mặt với kỳ thi tốt nghiệp THPT 2021 môn Toán. Tài liệu này thực sự là người bạn đồng hành đắc lực cho các học sinh trên con đường chinh phục môn Toán trong kỳ thi quan trọng của mình.