Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai

Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đội xe dự định chở 120 tấn hàng. Để tăng sự an toàn nên đến khi thực hiện, đội xe được bổ sung thêm 4 chiếc xe, lúc này số tấn hàng của mỗi xe chở ít hơn số tấn hàng của mỗi xe dự định chở là 1 tấn. Tính số tấn hàng của mỗi xe dự định chở, biết số tấn hàng của mỗi xe chở khi dự định là bằng nhau, khi thực hiện là bằng nhau. + Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB, ABC, BCA đều là góc nhọn. Gọi M là trung điểm của đoạn AH 1) Chứng minh tứ giác AEHF nội tiếp đường tròn 2) Chứng minh CE.CA = CD.CB 3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF 4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh 2 góc DIJ và DFC bằng nhau [ads] + Cho hai hàm số y = -1/2x^2 và y = x – 4 có đồ thị lần lượt là (P) và (d) 1) Vẽ hai đồ thị (P) và (d) trên cùng một mặt phẳng tọa độ 2) Tìm tọa độ giao điểm của hai đồ thị (P) và (d)

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Nguyên. Đề thi này được xây dựng dành chung cho tất cả các thí sinh, mang đến những thách thức và cơ hội để thể hiện tài năng học thuật của mình. Trích đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Thái Nguyên: 1. Hai đội công nhân cùng làm chung một công việc thì hoàn thành trong 12 giờ. Nếu làm riêng thì thời gian hoàn thành công việc của đội thứ hai ít hơn đội thứ nhất là 7 giờ. Hỏi khi làm riêng, mỗi đội hoàn thành công việc đó trong bao lâu? 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 6cm và diện tích tam giác ABC bằng 24cm. Tính độ dài các đoạn thẳng AC, BC, AH. 3. Cho hình thang ABCD vuông tại A và D. Kẻ BH vuông góc với DC tại H. Biết BH = 12cm, AB = 4cm, DC = 9cm. a) Tính độ dài đoạn thẳng BC; b) Chứng minh đường thẳng AD là tiếp tuyến của đường tròn đường kính BC. Đề thi mang đến những bài toán đa dạng, giúp các em học sinh rèn luyện kỹ năng tư duy logic và tính toán chính xác. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Quốc học Huế
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Quốc học Huế Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Quốc học Huế Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Quốc học Huế Chào đón quý thầy cô giáo và các em học sinh lớp 9, Sytu xin giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2022 – 2023 của trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế. Kỳ thi này sẽ diễn ra vào ngày 09 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Quốc học Huế: - Cho đường tròn (O) và dây BC cố định không đi qua O. Điểm A thay đổi trên cung lớn BC sao cho ABC là tam giác nhọn và AB < AC. Gọi AD, BE, CF là các đường cao và H là trực tâm của tam giác ABC. Gọi K là giao điểm của hai đường thẳng BC và EF; I là giao điểm thứ hai của KA với (O); M là trung điểm BC; N là giao điểm thứ hai của AH và (O). Chứng minh: a) Tứ giác AIFE là tứ giác nội tiếp; b) Ba điểm M, H, I thẳng hàng; c) Tứ giác INMO là tứ giác nội tiếp; d) Đường thẳng N luôn đi qua một điểm cố định khi A thay đổi. - Tìm tất cả các số nguyên x, y thỏa mãn x3 – x2(y + 1) + x(7 + y) – 4 – y = 0. - Cho x, y, z là các số thực dương thỏa mãn xy + yz + zx = 3. Chứng minh?
Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu Đề tuyển sinh môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu Chào đón quý thầy cô và các em học sinh lớp 9. Đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 - 2023 của sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu: 1. Cho parabol (P): y = x² và đường thẳng (d): y = 3x - 2. Hãy vẽ đồ thị của (P) và tìm tọa độ giao điểm của (P) với đường thẳng (d) dựa trên phép tính. 2. Giải phương trình x² - 5x + m + 2 = 0 (m là tham số): a) Giải phương trình khi m = 2. b) Tìm điều kiện của m để phương trình (1) có hai nghiệm phân biệt. c) Gọi x₁ và x₂ là hai nghiệm phân biệt của phương trình (1). Tìm giá trị lớn nhất của biểu thức P = x₁ + x₂. 3. Trên nửa đường tròn tâm O đường kính AB = 2R, vẽ điểm C (C khác A và B), kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kì trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại E. a) Chứng minh tứ giác BHDE nội tiếp. b) Chứng minh AD∙EC = CD∙AC. c) Khi điểm C di chuyển trên nửa đường tròn (C khác A, B và trung điểm của cung AB), xác định vị trí của điểm C sao cho chu vi tam giác COH lớn nhất.
Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình
Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Ninh Bình. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: Tìm tất cả các số nguyên dương $a$ và các số nguyên tố $p$ thỏa mãn $a^2 = 7p^4 + 9$. Cho tam giác $ABC$ (với $AB < AC$) nội tiếp đường tròn $(O)$. Gọi $M$, $N$ lần lượt là trung điểm của các cạnh $AB$, $AC$. Đường thẳng $MN$ cắt $(O)$ tại các điểm $P$, $Q$ ($P$ thuộc cung nhỏ $AB$ và $Q$ thuộc cung nhỏ $AC$). Lấy điểm $D$ trên cạnh $BC$ ($D$ khác $B$ và $D$ khác $C$). Đường tròn ngoại tiếp tam giác $BDP$ cắt $AB$ tại điểm $I$ ($I$ khác $B$). Đường thẳng $DI$ cắt $AC$ tại $K$. Chứng minh rằng tứ giác $AIPK$ nội tiếp. Chứng minh rằng $\frac{PK}{PD} = \frac{QB}{QA}$. Đường thẳng $CP$ cắt đường tròn ngoại tiếp tam giác $BDP$ tại $G$ ($G$ khác $P$). Đường thằng $IG$ cắt đường thẳng $BC$ tại điểm $E$. Chứng minh rằng khi điểm $D$ di chuyển trên cạnh $BC$ thì tỉ số $\frac{CD}{CE}$ không đổi. Cho bảng ô vuông $3 \times 3$ gồm ba dòng và ba cột. Người ta ghi tất cả các số thuộc tập hợp $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ vào các ô vuông của bảng, sao cho tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$ đều bằng nhau. Hãy chỉ ra một cách ghi các số vào bảng thỏa mãn yêu cầu bài toán. Trong tất cả các cách ghi các số vào bảng thỏa mãn yêu cầu bài toán, tìm giá trị lớn nhất của tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$. Hy vọng các em sẽ ôn tập và làm bài thi tốt! Chúc quý thầy cô giáo và các em học sinh thành công!