Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit - Diệp Tuân

Tài liệu gồm 420 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit (Toán 12 phần Giải tích chương 2). CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1. 1. LŨY THỪA. A. Lý thuyết 1. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 4. Dạng 1. Biến đổi biểu thức liên quan và so sánh 2. Dạng 2. Rút gọn biểu thức 10. C. Câu hỏi trắc nghiệm 17. Dạng 1. Lũy thừa với số mũ hữu tỉ 18. Dạng 2. Lũy thừa với số mũ vô tỉ 26. 2. HÀM SỐ LŨY THỪA. A. Lý thuyết 31. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 32. Dạng 1. Tập xác định của hàm số lũy thừa 32. Dạng 2. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 35. + Loại 1. Tính đạo hàm của hàm số lũy thừa 35. + Loại 2. Tính giá trị lớn nhất và giá trị lớn nhất của hàm số lũy thừa 36. Dạng 3. Tính chất đồ thị của hàm số lũy thừa 41. C. Câu hỏi trắc nghiệm trong các đề thi đại học 46. 3. LÔGARIT. A. Lý thuyết 57. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 58. Dạng 1. Tập xác định của hàm số lôgarit 58. Dạng 2. Rút gọn biểu thức 66. Dạng 3. Tính giá trị của biểu thức, chứng minh đẳng thức 71. Dạng 4. Khái niệm, tính chất và so sánh 81. Dạng 5. Biểu diễn một lôgarit theo một lôgarit khác cơ số cho trước 90. 4. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. A. Lý thuyết 102. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 103. Dạng 1. Tập xác định của hàm số lôgarit 103. Dạng 2. Tính giá trị của biểu thức khi biết một điều kiện 115. Dạng 3. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 118. Dạng 4. Sự đồng biến và nghịch biến của hàm số mũ và hàm số lôgarit 157. Dạng 5. Tìm cực trị của hàm số mũ và hàm số lôgarit 168. Dạng 6. Tính chất và đồ thị của hàm số mũ và hàm số lôgarit 170. Dạng 7. Bài toán thực tế, lãi suất 184. + Loại 1. Bài toán lãi kép 184. + Loại 2. Bài toán gửi tiết kiệm hàng tháng 192. + Loại 3. Bài toán trả góp hàng tháng 195. + Loại 4. Bài toán tăng trưởng 198. 5. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. I. PHƯƠNG TRÌNH MŨ. A. Lý thuyết 203. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 203. Dạng 1. Phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 203. Dạng 2. Phương pháp đặt ẩn phụ 211. Dạng 3. Phương pháp Lôgarit hóa 222. Dạng 4. Phương pháp tích 229. Dạng 5. Phương pháp đặt ẩn phụ không hoàn toàn, phương pháp đồ thị 232. Dạng 6. Phương pháp sử dụng tính đơn điệu của hàm số 235. Dạng 7. Phương trình chứa tham số m 235. + Loại 1. Tìm điều kiện của m để phương trình có nghiệm 241. + Loại 2. Tìm điều kiện của m để phương trình có n nghiệm trên [a;b] 246. + Loại 3. Tìm điều kiện của m để phương trình có nghiệm thỏa mãn điều kiện 253. II. PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 263. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 263. Dạng 1. Phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 263. Dạng 2. Phương pháp đặt ẩn phụ 289. Dạng 3. Phương pháp mũ hóa Lôgarit 304. Dạng 4. Phương pháp tích 311. Dạng 5. Phương pháp đồ thị và hàm đặt trưng 315. Dạng 6. Phương trình chứa tham số m 321. 6. BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. I. BẤT PHƯƠNG TRÌNH MŨ. A. Lý thuyết 344. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 344. Dạng 1. Bất phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 344. Dạng 2. Phương pháp đặt ẩn phụ 356. Dạng 3. Phương pháp Lôgarit hóa và bất phương trình tích 365. Dạng 4. Phương pháp sử dụng tính đơn điệu của hàm số 368. Dạng 5. Bất phương trình chứa tham số m 370. II. BẤT PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 382. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 382. Dạng 1. Bất phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 382. Dạng 2. Phương pháp đặt ẩn phụ 406. Dạng 3. Phương pháp biến đổi về phương trình tích 414.

Nguồn: toanmath.com

Đọc Sách

80 bài tập trắc nghiệm luyện tập chuyên đề hàm số - Mẫn Ngọc Quang
Tài liệu gồm 54 trang với các bài toán trắc nghiệm ôn tập chuyên để hàm số, các bài tập có đáp án và được giải chi tiết. Trích dẫn tài liệu : + Cho hàm số y = x^3 – 3x^2 (C). Cho các mệnh đề: (1) Hàm số có tập xác định R (2) Hàm số đạt cực trị tại x = 0; x = 2 (3) Hàm số đồng biến trên các khoảng (-∞; 0) ∪ (2; +∞) (4) Điểm (0; 0) là điểm cực tiểu (5) yCĐ – yCT = 4 Có bào nhiêu mệnh đề đúng? [ads] + Cho hàm số y = x^3 – 3x^2 (C). Chọn số nhận định sai trong các nhận định sau: (1) Hàm số đồng biến trên khoảng (0; 2), hàm số nghịch biến trên các khoảng (-∞; 0); (2; +∞) (2) Hàm số đạt cực tiểu tại x = 0, hàm số đạt cực đại tại x = 2 (3) Phương trình tiếp tuyến của (C) tại điểm có hoành độ x0 = 1 là y = 3x – 5 + Cho hàm số y = (2x + 1)/(x + 1) có đồ thị (C). Cho các mệnh đề: (1) Hàm số đồng biến trên toàn tập xác định D = R\{1} (2) Hàm số không có cực trị (3) Đồ thị hàm số có tiệm cận đứng là y = 2, tiệm cận ngang là x = -1 (4) Đồ thị hàm số đối xứng nhau qua giao của hai tiệm cận I(-1; 2) Có bao nhiêu mệnh đề đúng?
Bài tập trắc nghiệm chuyên đề hàm số có lời giải chi tiết - Phạm Văn Huy
Tài liệu gồm 114 trang với bài tập trắc nghiệm chuyên đề hàm số đầy đủ các chủ đề, có đáp án và lời giải chi tiết. Trích dẫn tài liệu : + Cho hàm số y = f(x) = -x^4 – 4x^2 + 2. Chọn phát biểu đúng: A. Hàm số trên có 1 điểm cực đại và 2 điểm cực tiểu B. Hàm số trên có 2 điểm cực đại và 1 điểm cực tiểu C. Hàm số có 1 điểm cực trị là điểm cực đại D. Hàm số có 1 điểm cực trị là điểm cực tiểu [ads] + Cho hàm số y = x^3 – 3mx^2 + 3(2m – 1)x + 1 (Cm). Các mệnh đề dưới đây: (a) Hàm số (Cm) có một cực đại và một cực tiểu nếu m = 1 (b) Nếu m = 1 thì giá trị cực tiểu là 3m – 1 (c) Nếu m = 1 thì giá trị cực đại là 3m – 1 Mệnh đề nào đúng? A. Chỉ (a) đúng B. (a) và (b) đúng, (c) sai C. (a) và (c) đúng, (b) sai D. (a), (b), (c) đều đúng + Cho hàm số y = x^4 – 6x^2 + 3 có đồ thị là (C). Parabol y = -x^2 – 1 cắt đồ thị (C) tại bốn điểm phân biệt. Tổng bình phương các hoành độ giao điểm của P và (C) bằng?
Bài tập trắc nghiệm ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số - Nguyễn Đại Dương
Tài liệu gồm 90 trang với tóm tắt lý thuyết, ví dụ mẫu và bài tập trắc nghiệm ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Các bài toán được chia thành các dạng: Tính đơn điệu của hàm số Dạng 1: Tìm tham số m để hàm số đơn điệu trên TXD Dạng 2: Tìm tham số m để hàm số đơn điệu trên một khoảng, đoạn, nữa khoảng cho trước Cực trị của hàm số Dạng 1: Tìm m để hàm số y = f(x) đạt cực trị tại điểm xo Dạng 2: Cho hàm số y = f(x;m) = ax^3 + bx^2 + cx + d, tìm tham số m để đồ thị hàm số có điểm cực trị x1, x2 thỏa mãn điều kiện K cho trước Dạng 3: Bài toán liên quan phương trình đường thẳng qua hai điểm cực trị của hàm số bậc 3: y = ax^3 + bx^2 + cx + d Dạng 4: Tìm m để hàm số trùng phương y = ax^4 + bx^2 + c có cực trị thỏa mãn yêu cầu [ads] Khảo sát hàm số Tương giao giữa hai đồ thị Dạng 1: Tương giao giữa đồ thị hàm số y = f(x) và đường thẳng y = g(m). Bài toán biện luận số nghiệm của phương trình f(x) = g(m) Dạng 2: Tương giao giữa hàm số bậc 3 y = ax^3 + bx^2 + cx + d và đường thẳng y = a’x + b’ Dạng 3: Tương giao giữa hàm số bậc 4 trùng phương y = ax^4 + bx^2 + c và đường thẳng y = k Dạng 4: Tương giao giữa hàm số phân thức y = (ax + b)/(cx + d) và đường thẳng y = a’x + b’ Dạng 5: Tương giao giữa hai đồ thị hàm số bất kì y = f(x, m), y = g(x, m) Tiếp xúc – tiếp tuyến
Bài tập trắc nghiệm chuyên đề hàm số - Đặng Việt Đông
Tài liệu gồm 46 trang với các câu hỏi trắc nghiệm chuyên đề hàm số có đáp án, các bài toán được phân loại thành các phần: SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ (50 câu) Bài toán 1: Tìm khoảng đồng biến – nghịch biến của hàm số: Bài toán 2: Tìm m để hàm số y = f(x, m) đơn điệu trên khoảng (a, b) CỰC TRỊ CỦA HÀM SỐ (80 câu) Bài toán 1: tìm điểm cực đại – cực tiểu của hàm số Bài toán 2: Cực trị của hàm bậc 3 Bài toán 3: Cực trị của hàm số bậc 4 trùng phương [ads] GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ (72 câu) TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ (58 câu) BẢNG BIẾN THIÊN VÀ ĐỒ THỊ HÀM SỐ (39 câu) SỰ TƯƠNG GIAO CỦA ĐỒ THỊ HÀM SỐ (59 câu) Bài toán 1: Tọa độ giao điểm của hai đồ thị hàm số Bài toán 2: Tương giao của đồ thị hàm bậc 3 Bài toán 3: Tương giao của hàm số phân thức Bài toán 4: Tương giao của hàm số bậc 4 TIẾP TUYẾN CỦA ĐỒ THỊ HÀM SỐ (48 câu) Bài toán 1: Tiếp tuyến tại điểm M (x0;y0) thuộc đồ thị hàm số: Bài toán 2: Tiếp tuyến có hệ số góc k cho trước Bài toán 3: Tiếp tuyến đi qua điểm