Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit - Diệp Tuân

Tài liệu gồm 420 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit (Toán 12 phần Giải tích chương 2). CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1. 1. LŨY THỪA. A. Lý thuyết 1. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 4. Dạng 1. Biến đổi biểu thức liên quan và so sánh 2. Dạng 2. Rút gọn biểu thức 10. C. Câu hỏi trắc nghiệm 17. Dạng 1. Lũy thừa với số mũ hữu tỉ 18. Dạng 2. Lũy thừa với số mũ vô tỉ 26. 2. HÀM SỐ LŨY THỪA. A. Lý thuyết 31. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 32. Dạng 1. Tập xác định của hàm số lũy thừa 32. Dạng 2. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 35. + Loại 1. Tính đạo hàm của hàm số lũy thừa 35. + Loại 2. Tính giá trị lớn nhất và giá trị lớn nhất của hàm số lũy thừa 36. Dạng 3. Tính chất đồ thị của hàm số lũy thừa 41. C. Câu hỏi trắc nghiệm trong các đề thi đại học 46. 3. LÔGARIT. A. Lý thuyết 57. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 58. Dạng 1. Tập xác định của hàm số lôgarit 58. Dạng 2. Rút gọn biểu thức 66. Dạng 3. Tính giá trị của biểu thức, chứng minh đẳng thức 71. Dạng 4. Khái niệm, tính chất và so sánh 81. Dạng 5. Biểu diễn một lôgarit theo một lôgarit khác cơ số cho trước 90. 4. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. A. Lý thuyết 102. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 103. Dạng 1. Tập xác định của hàm số lôgarit 103. Dạng 2. Tính giá trị của biểu thức khi biết một điều kiện 115. Dạng 3. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 118. Dạng 4. Sự đồng biến và nghịch biến của hàm số mũ và hàm số lôgarit 157. Dạng 5. Tìm cực trị của hàm số mũ và hàm số lôgarit 168. Dạng 6. Tính chất và đồ thị của hàm số mũ và hàm số lôgarit 170. Dạng 7. Bài toán thực tế, lãi suất 184. + Loại 1. Bài toán lãi kép 184. + Loại 2. Bài toán gửi tiết kiệm hàng tháng 192. + Loại 3. Bài toán trả góp hàng tháng 195. + Loại 4. Bài toán tăng trưởng 198. 5. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. I. PHƯƠNG TRÌNH MŨ. A. Lý thuyết 203. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 203. Dạng 1. Phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 203. Dạng 2. Phương pháp đặt ẩn phụ 211. Dạng 3. Phương pháp Lôgarit hóa 222. Dạng 4. Phương pháp tích 229. Dạng 5. Phương pháp đặt ẩn phụ không hoàn toàn, phương pháp đồ thị 232. Dạng 6. Phương pháp sử dụng tính đơn điệu của hàm số 235. Dạng 7. Phương trình chứa tham số m 235. + Loại 1. Tìm điều kiện của m để phương trình có nghiệm 241. + Loại 2. Tìm điều kiện của m để phương trình có n nghiệm trên [a;b] 246. + Loại 3. Tìm điều kiện của m để phương trình có nghiệm thỏa mãn điều kiện 253. II. PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 263. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 263. Dạng 1. Phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 263. Dạng 2. Phương pháp đặt ẩn phụ 289. Dạng 3. Phương pháp mũ hóa Lôgarit 304. Dạng 4. Phương pháp tích 311. Dạng 5. Phương pháp đồ thị và hàm đặt trưng 315. Dạng 6. Phương trình chứa tham số m 321. 6. BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. I. BẤT PHƯƠNG TRÌNH MŨ. A. Lý thuyết 344. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 344. Dạng 1. Bất phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 344. Dạng 2. Phương pháp đặt ẩn phụ 356. Dạng 3. Phương pháp Lôgarit hóa và bất phương trình tích 365. Dạng 4. Phương pháp sử dụng tính đơn điệu của hàm số 368. Dạng 5. Bất phương trình chứa tham số m 370. II. BẤT PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 382. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 382. Dạng 1. Bất phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 382. Dạng 2. Phương pháp đặt ẩn phụ 406. Dạng 3. Phương pháp biến đổi về phương trình tích 414.

Nguồn: toanmath.com

Đọc Sách

Bài tập VD VDC nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 49 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn 69 câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng, mức độ vận dụng và vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phù hợp với đối tượng học sinh có học lực khá – giỏi, ôn thi điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu bài tập VD – VDC nguyên hàm, tích phân và ứng dụng: + Vấn đề 1. Nguyên hàm. + Vấn đề 2. Tích phân. + Vấn đề 3. Ứng dụng nguyên hàm, tích phân để giải toán.
Bài tập nguyên hàm, tích phân và ứng dụng - Diệp Tuân
Tài liệu gồm 301 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán trắc nghiệm nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3), các bài tập trong tài liệu đầy đủ các mức độ nhận thức: nhận biết (NB), thông hiểu (TH), vận dụng (VD) và vận dụng cao (VDC). Khái quát nội dung tài liệu bài tập nguyên hàm, tích phân và ứng dụng – Diệp Tuân: BÀI 1 . NGUYÊN HÀM. Dạng 1. Tìm họ nguyên hàm của các hàm cơ bản. Dạng 2. Sử dụng các kỹ thuật đặc biệt để tìm họ nguyên hàm của các hàm phức tạp. + Kỹ thuật 1. Nhân đa thức để tìm họ nguyên hàm có dạng tích của các đa thức. + Kỹ thuật 2. Sử dụng công thức lũy thừa để tìm họ nguyên hàm căn thức. + Kỹ thuật 3. Sử dụng công thức cộng lượng giác để tìm họ nguyên hàm của tích của các hàm lượng giác. + Kỹ thuật 4. Sử dụng công thức hạ bậc để tìm họ nguyên hàm của các hàm lượng giác có mũ bậc chẵn. + Kỹ thuật 5. Sử dụng kỹ thuật tách hạng tử, nhóm hạng tử, thêm bớt hạng tử để tìm họ nguyên hàm của các hàm phân thức hữu tỉ. BÀI 2 . CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM CƠ BẢN. Dạng 1. Phương pháp đổi biến số. Dạng 2. Phương pháp từng phần. + Loại 1. P(x) nhân sinx hoặc cosx trong đó P(x) là đa thức. + Loại 2. P(x) nhân e^(ax + b) trong đó P(x) là đa thức. + Loại 3. P(x) nhân ln(mx +  n) trong đó P(x) là đa thức. + Loại 4. e^x nhân sinx hoặc cosx. + Loại 5. Đổi biển rồi từng phần. Dạng 3. Phương pháp lấy nguyên hàm hai vế (tích phân hàm ẩn). [ads] BÀI 3 . TÍCH PHÂN. Dạng 1. Tính tích phân cơ bản. Dạng 2. Phương pháp đổi biến loại 1. Dạng 3. Phương pháp đổi biến loại 2. + Loại 1. Đổi biến hàm căn thức. + Loại 2. Đổi biến hàm lượng giác. + Loại 3. Đổi biến một số tích phân đặc biệt. Dạng 4. Phương pháp từng phần. + Bài toán 1. Tích phân từng phần thuộc dạng f(x) nhân ln(g(x)). + Bài toán 2. Tích phân từng phần thuộc dạng f(x) nhân sinax hoặc cosax hoặc e^ax. + Bài toán 3. Tích phân từng phần thuộc dạng e^ax nhân sinax hoặc cosax. BÀI 4 . ỨNG DỤNG TÍNH DIỆN TÍCH – THỂ TÍCH. Dạng 1. Tính diện tích hình phẳng giới hạn bởi một đồ thị hàm số y = f(x), trục hoành Ox và hai đường thẳng x = a, x = b. Dạng 2. Tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b. Dạng 3. Tính diện tích hình phẳng giới hạn bởi ba đồ thị hàm số. Dạng 4. Tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số có dạng x = f(y) và hai đường thẳng y = a, y = b. Dạng 5. Tính thể tích vật thể giới hạn bởi một đồ thị hàm số có dạng y = f(x), x = a, x = b và trục hoành y = 0 khi quay quanh trục hoành (Ox). Dạng 6. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x), x = a, x = b khi quay quanh trục hoành. Dạng 7. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số x = f(y), x = g(y), y = a, y = b khi quay quanh trục tung Oy. Dạng 8. Ứng dụng trong thực tế tính vận tốc, quãng đường, diện tích và thể tích vật thể.
59 bài tập tích phân hàm ẩn có lời giải chi tiết
Tài liệu gồm 27 trang tuyển chọn 59 bài tập tích phân hàm ẩn có lời giải chi tiết, đây là lớp bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong chương trình Giải tích 12 chương 3 (Nguyên hàm, Tích phân và Ứng dụng) và thường xuất hiện trong các đề thi thử THPT Quốc gia môn Toán. Trích dẫn tài liệu 59 bài tập tích phân hàm ẩn có lời giải chi tiết: + Cho hàm số f(x) xác định trên R\{-1;1} và thỏa mãn f'(x) = 1/(x^2 – 1), f(-3) + f(3) = 0 và f(-1/2) + f(1/2) = 2. Tính giá trị của biểu thức P = f(0) + f(4). + Cho hàm số liên tục trên đoạn [-ln2;ln2] và thỏa mãn f(x) + f(-x) = 1/(e^x + 1). Biết tích phân từ -ln2 đến ln2 của f(x)dx bằng aln2 + bln3 với a và b thuộc Q. Tính giá trị của P = a + b. + Xét hàm số f(x) liên tục trên đoạn [-1;2] và thỏa mãn f(x) = √(x + 2) + xf(3 – x^2). Tính giá trị tích phân từ -1 đến 2 của f(x)dx. + Cho hàm số f(x) không âm thỏa mãn điều kiện f(x).f'(x) = 2x.√(f2(x) + 1) và f(0) = 0. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [1;3] bằng? + Cho hàm số f(x) thỏa mãn f(2) = -1/25; f'(x) = 4x^3.[f(x)]^2 với mọi x thuộc R. Giá trị của f(1) là?
Hệ thống bài tập vận dụng cao, phân loại ứng dụng tích phân tính diện tích hình phẳng
Tài liệu gồm 31 trang được biên soạn bởi thầy Lương Tuấn Đức (Giang Sơn) tuyển chọn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại ứng dụng tích phân tính diện tích hình phẳng (phần 1 đến phần 15), giúp học sinh học tốt chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng và ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán. Trích dẫn hệ thống bài tập vận dụng cao, phân loại ứng dụng tích phân tính diện tích hình phẳng: + Tính diện tích S (lấy xấp xỉ) của hình phẳng giới hạn bởi trục hoành và hai đường tròn có phương trình x^2 + y^2 = 1 và x^2 + (y + 3)^2 = 25. + Tính diện tích của hình phẳng là giao của hai đường tròn có bán kính lần lượt là 2; 3 và đoạn nối tâm bằng 4 (kết quả làm tròn đến chữ số thập phân thứ hai). + Trong Công viên Toán học có những mảnh đất mang hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp trong toán học. Ở đó có một mảnh đất mang nên Bernoulli, nó được tạo thành từ đường Lemmiscate có phương trình 16y^2 = x^2(25 – x^2) như hình vẽ bên. Tính diện tính của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ tọa độ hình vẽ tương ứng với chiều dài 1m.