Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Sóc Trăng

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Sóc Trăng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng; kỳ thi được diễn ra vào ngày 29 và 30 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng : + Với số thực a, xét dãy số (un) xác định bởi. a) Chứng minh rằng với mọi số a hữu tỷ, các số hạng của dãy số (un) luôn xác định. b) Với a thuộc [0;1), chứng minh rằng dãy số (vn) xác định bởi vn = n2un với mọi n = 1; 2; … luôn có giới hạn hữu hạn, tìm giới hạn đó. + Cho bảng ô vuông 12 × 12 được chia thành 144 ô phân biệt. Một hình chữ Z (nằm dọc hoặc nằm ngang, gồm 4 ô vuông) được tạo thành từ bảng 3 × 2 hoặc 2 × 3 cắt bỏ đi hai ô ở góc đối diện như các hình bên dưới. a) Người ta muốn tô màu mỗi ô của bảng 12 × 12 ở trên bởi 2 màu xanh, đỏ sao cho trong mỗi hình chữ Z bất kỳ, luôn có đúng 2 ô xanh và 2 ô đỏ. Chứng minh rằng nếu trên cột 1 có hai ô liên tiếp được tô đỏ thì toàn bộ các ô ở cột 12 đều được tô xanh. b) Tính số cách điền các số từ 1; 2; 3; …; 144 lên bảng và mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, số lượng số chẵn bằng số lượng số lẻ. c) Hỏi có tồn tại hay không cách điền số các số từ 1; 2; 3; …; 144 lên bảng, mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, tổng các số trên đó đều chia hết cho 3? + Xét tam giác ABC nhọn, không cân có AB < AC nội tiếp trong đường tròn (O) với B, C cố định và A thay đổi trên (O). Các đường cao AD, BE, CF đồng quy tại H. Gọi M là trung điểm của BC. Lấy I đối xứng với A qua EF và đường tròn ngoại tiếp tam giác IMO cắt lại AM tại L. a) Chứng minh rằng L luôn thuộc một đường tròn cố định khi A di động trên (O). b) Đường tròn ngoại tiếp tam giác AHC cắt lại BC tại R, EF cắt BC tại T, AR cắt DE tại G. Chứng minh rằng nếu G là trung điểm của đoạn thẳng DE thì F là trung điểm của đoạn thẳng ET.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên
Nội dung Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi khảo sát đội dự tuyển học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào thứ Sáu ngày 26 tháng 08 năm 2022. Trích dẫn đề khảo sát đội tuyển HSGQG Toán năm 2022 – 2023 chuyên Lê Quý Đôn – Điện Biên : + Cho tam giác nhọn ABC không cân tại A, có trực tâm H. Từ B kẻ đường thẳng vuông góc với AC, cắt đường tròn đường kính AC tại hai điểm D và E (D nằm giữa E và B) đồng thời cắt đường thẳng AC tại K. Từ C kẻ đường thẳng vuông góc với AB, cắt đường tròn đường kính AB tại hai điểm F và G (F nằm giữa C và G) đồng thời cắt đường thẳng AB tại L. a) Chứng minh rằng bốn điểm D, F, E, G cùng nằm trên một đường tròn. b) Giả sử KL giao BC tại I. Từ B kẻ đường thẳng vuông góc với AI và cắt đường thẳng LC tại J. Chứng minh rằng H là trung điểm đoạn thẳng CJ. + Cho 2022 số nguyên dương a1, a2, …, a2022 bất kỳ. Có tồn tại hay không vô hạn số nguyên dương n >= 2022 thỏa mãn dãy 2022 số đều là hợp số không? + Cho bảng ô vuông kích thước 100×100 mà mỗi ô được điền một trong các ký tự A, B, C, D sao cho trên mỗi hàng, mỗi cột của bảng thì số lượng ký tự từng loại đúng bằng 25. Ta gọi hai ô thuộc cùng hàng (không nhất thiết kề nhau) nhưng được điền khác ký tự là “cặp tốt”, còn hình chữ nhật có các cạnh song song với bảng và bốn đỉnh của nó được điền đủ bốn ký tự A, B, C, D là “bảng tốt”. a) Hỏi trong các cách điền ở trên, có bao nhiêu cách điền mà mỗi bảng ô vuông 1×4, 4×1 và 2×2 đều có chứa đủ các ký tự A, B, C, D? b) Chứng minh rằng với mọi cách điền thỏa mãn đề bài thì trên bảng ô vuông đã cho: i) Luôn có 2 cột của bảng mà từ đó có thể chọn ra được 76 cặp tốt. ii) Luôn có một bảng tốt.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT An Giang
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT An Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang, kỳ thi được diễn ra vào ngày 20 tháng 08 năm 2022.
Đề kiểm tra đội tuyển Toán năm 2022 trường chuyên Hùng Vương Bình Dương
Nội dung Đề kiểm tra đội tuyển Toán năm 2022 trường chuyên Hùng Vương Bình Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra đội dự tuyển học sinh giỏi môn Toán năm học 2022 – 2023 trường THPT chuyên Hùng Vương, tỉnh Bình Dương; kỳ thi được diễn ra trong hai ngày: 05/08/2022 và 06/08/2022. Trích dẫn đề kiểm tra đội tuyển Toán năm 2022 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nội tiếp đường tròn (O); B, C cố định và A di động trên đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. a) Gọi P là giao điểm của FD và BE; Q là giao điểm của FC và DE; K là hình chiếu của D lên PQ. Chứng minh rằng BKD = DKC. b) Kẻ đường kính AL của đường tròn (O); tia LH cắt đường tròn (O) tại T. Gọi M là giao điểm của đường tròn ngoại tiếp tam giác TEB và EF (M # E); N là giao điểm của đường tròn ngoại tiếp tam giác TFC và EF (N # F). Chứng minh rằng đường tròn ngoại tiếp tam giác TMN luôn đi qua một điểm cố định. + Cho bàn cờ 9 x 9 như hình vẽ bên. Có bao nhiêu cách xếp 8 quân xe vào bàn cờ sao cho cả 8 quân xe đều nằm trên các ô cùng màu và không có hai quân xe nào nằm cùng hàng hoặc cùng cột. + Cho số nguyên tố p và số nguyên n > 1 thỏa mãn: p – 1 chia hết cho n và n3 – 1 chia hết cho p. Chứng minh 4p – 3 là số chính phương.
Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Lạng Sơn
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 chuyên năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi cấp tỉnh Toán lớp 12 chuyên năm 2021 – 2022 sở GD&ĐT Lạng Sơn : + Cho tam giác ABC có ba đường cao AD BE CF cắt nhau tại H. Gọi S T lần lượt là trung điểm của AB AC. Đường thẳng ST cắt BE CF lần lượt tại M N. a) Chứng minh rằng đường thẳng nối tâm hai đường tròn ngoại tiếp các tam giác MTH NSH vuông góc với AH. b) Gọi P P lần lượt là ảnh đối xứng của B E qua CH. Gọi Q Q lần lượt là ảnh đối xứng của C F qua BH. Chứng minh rằng P Q P Q đồng viên. c) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác HPQ nằm trên đường thẳng Euler của tam giác ABC. + Cho số nguyên dương n. Tìm số nguyên dương k nhỏ nhất thỏa mãn tính chất: khi lấy ra k phần tử phân biệt bất kì từ tập hợp 1; 2; 3; …; 2n (gồm 2n số nguyên dương liên tiếp) thì luôn có 2 phần tử được lấy ra mà số này chia hết cho số kia. + Chứng minh rằng tồn tại vô hạn số nguyên dương n sao cho ước nguyên tố lớn nhất của 4 n 1 lớn hơn 2n.