Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội

Nội dung Đề Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội Bản PDF - Nội dung bài viết Đề Olympic Toán lớp 7 năm 2021-2022 phòng GD&ĐT Ứng Hòa Hà Nội Đề Olympic Toán lớp 7 năm 2021-2022 phòng GD&ĐT Ứng Hòa Hà Nội Xin chào quý thầy cô giáo và các em học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến bạn Đề thi Olympic môn Toán lớp 7 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trong đề thi, có những câu hỏi thú vị như việc ba lớp 7A, 7B, 7C mua số gói tăm từ thiện với tỉ lệ ban đầu là 5, 6, 7 nhưng sau đó thay đổi thành 4, 5, 6, dẫn đến một lớp nhận nhiều hơn dự định 4 gói. Bạn hãy tính tổng số gói tăm mà ba lớp đã mua. Ngoài ra, trong đề còn có câu hỏi về tam giác ABC, với việc vẽ tam giác đều ABD và ACE về phía ngoài ABC. Bạn cần chứng minh một số mệnh đề như ADC = ABE, DIB = 60°, AMN đều, và IA là tia phân giác của DIE. Cuối cùng, đề còn đưa ra một bài toán thú vị về 100 số hữu tỉ trong đó tích của bất kỳ ba số nào cũng là một số âm. Bạn sẽ cần chứng minh rằng tất cả 100 số đó đều là số âm. Đây là những thách thức thú vị và hấp dẫn trong đề thi Olympic Toán lớp 7 năm 2021-2022. Chúc các em học sinh cố gắng và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát năng lực học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Ninh Giang, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT Ninh Giang – Hải Dương : + Chứng minh rằng với mọi số nguyên dương a, b thì ab(a2 − 1)(b2 + 2) chia hết cho 9. + Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC tại H. Trên nửa mặt phẳng bờ AB không chứa điểm C lấy điểm E sao cho tam giác ABE vuông cân tại B. Kẻ EM vuông góc với đường thẳng BC tại M. a) Chứng minh BH = EM. b) Trên tia đối của tia AH lấy điểm F sao cho AF = BC. Chứng minh BF vuông góc với CE. + Tìm số tự nhiên a nhỏ nhất sao cho a + 1 chia hết cho 2; a chia hết cho tích của hai số nguyên tố liên tiếp và tích 2023a là số chính phương.
Đề giao lưu HSG Toán 7 lần 7 năm 2023 - 2024 phòng GDĐT Nông Cống - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi cụm môn Toán 7 lần 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nông Cống, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 lần 7 năm 2023 – 2024 phòng GD&ĐT Nông Cống – Thanh Hóa : + Bốn bao gạo có tổng cộng 375kg. Lần thứ nhất người ta lấy đi 1kg ở bao thứ nhất; 2kg ở bao thứ hai; 3kg ở bao thứ ba; 4kg ở bao thứ tư. Lần thứ hai người ta lấy đi tiếp 1 5 số kg gạo còn lại của bao thứ nhất; 1 4 số kg gạo còn lại của bao thứ hai; 1 3 số kg gạo còn lại của bao thứ ba; 1 2 số kg gạo còn lại của bao thứ tư thì số kg gạo còn lại sau lần lấy thứ hai của bốn bao bằng nhau. Tìm số kg gạo mỗi bao lúc đầu. + Tìm tất cả các cặp số nguyên (x;y) thoả mãn: x y xy 2 4. + Cho ∆ABC có ba góc nhọn AB AC trung tuyến AM. Trên nửa mặt phẳng bờ AB chứa điểm C, vẽ đoạn thẳng AE vuông góc với AB và AE AB. Trên nửa mặt phẳng bờ AC chứa điểm B, vẽ đoạn thẳng AD vuông góc với AC và AD AC. 1. Chứng minh: BD = CE. 2. Trên tia đối của tia MA lấy N sao cho MN MA. Chứng minh: ACN BAC 180 0 và ADE CAN. 3. Gọi giao điểm của DE với AB, AC lần lượt là Q, P. Chứng minh: AP < AQ.
Đề kiểm tra CLB Toán 7 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra CLB Văn Hóa môn Toán 7 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 09 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề kiểm tra CLB Toán 7 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Trên một mặt phẳng cho 8 điểm phân biệt, trong đó có 5 điểm thẳng hàng. Cứ nối 3 điểm phân biệt không thẳng hàng sẽ tạo thành một tam giác, hỏi có bao nhiêu tam giác được tạo thành khi nối các điểm từ 8 điểm trên. + Cho một đường tròn, trên đường tròn lấy 2023 chấm đỏ và 2024 chấm xanh. Người ta viết số 1 vào giữa hai chấm đỏ, viết số –1 vào giữa hai chấm xanh, và viết số 0 vào giữa hai chấm khác màu. Hỏi tổng các số trên đường tròn bằng bao nhiêu? + Cho k là một số tự nhiên khác 0, chứng minh rằng tồn tại số tự nhiên có dạng 1011 1 k chia hết cho 2023.
Đề HSG Toán 7 năm 2022 - 2023 cụm chuyên môn số 02 Sơn Tây - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi môn Toán 7 năm học 2022 – 2023 cụm chuyên môn số 02 thị xã Sơn Tây, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 7 năm 2022 – 2023 cụm chuyên môn số 02 Sơn Tây – Hà Nội : + Lớp 7A có 52 học sinh chia làm ba tổ. Nếu tổ một bớt đi 1 học sinh, tổ hai bớt đi 2 học sinh, tổ ba thêm vào 3 học sinh thì số học sinh tổ một, tổ hai, tổ ba tỉ lệ nghịch với 3; 4; 2. Tìm số học sinh của mỗi tổ. + Tìm hệ số a sao cho đa thức G(x) = x4 + x2 + a chia hết cho đa thức M(x) = x2 – x + 1. + Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt cạnh BC tại điểm I. Trên cạnh AC lấy điểm D sao cho AD = AB. a/ Chứng minh rằng BI = ID. b/ Tia DI cắt tia AB tại điểm E. Chứng minh rằng ∆IBE = ∆IDC, từ đó suy ra BD // CE. c/ Gọi H là trung điểm của EC. Chứng minh ba điểm A, H, I thẳng hàng và AH ⊥ BD. d/ Chứng minh AB + BI = AC.