Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập khối đa diện và thể tích của chúng - Hoàng Xuân Nhàn

Tài liệu gồm 143 trang, được biên soạn bởi thầy giáo Hoàng Xuân Nhàn, hướng dẫn giải các dạng bài tập khối đa diện và thể tích của chúng, hỗ trợ học sinh khối 12 trong quá trình học tập chương trình Hình học 12 chương 1 và ôn thi tốt nghiệp THPT môn Toán. Mục lục các dạng bài tập khối đa diện và thể tích của chúng – Hoàng Xuân Nhàn: Bài 1&2 . Đa diện, đa diện lồi, đa diện đều (Trang 1). Dạng 1. Nhận diện hình (khối) đa diện, đa diện lồi (Trang 3). Dạng 2. Tìm số đỉnh, số cạnh, số mặt của một hình đa diện (Trang 5). Dạng 3. Tâm đối xứng, trục đối xứng, mặt đối xứng, lắp ghép đa diện (Trang 6). Bài tập trắc nghiệm (Trang 9). Đáp bán bài tập trắc nghiệm (Trang 14). Bài 3 . Thể tích khối đa diện (Trang 15). Dạng 1. Tìm thể tích khối chóp (Trang 20). + Bài toán 1. Tìm thể tích khối chóp bằng các phép tính đơn giản (Trang 21). + Bài toán 2. Tìm thể tích khối chóp thông qua góc (Trang 24). + Bài toán 3. Tỉ số thể tích khối chóp (Trang 31). Dạng 2. Thể tích khối lăng trụ (Trang 38). + Bài toán 1. Tìm thể tích khối lăng trụ bằng phép tính đơn giản (Trang 38). + Bài toán 2. Tìm thể tích khối lăng trụ thông qua góc (Trang 41). + Bài toán 3. Tỉ số thể tích khối lăng trụ (Trang 46). + Bài toán 4. Lăng trụ ẩn (Trang 51). Dạng 3. GTLN – GTNN (max – min) thể tích (Trang 53). + Bài toán 1. Điều kiện về cạnh trong hình chóp (Trang 54). + Bài toán 2. Điều kiện về cạnh trong lăng trụ (Trang 57). + Bài toán 3. Điều kiện về góc (Trang 59). + Bài toán 4. Bài toán tối ưu (Trang 62). Bài tập trắc nghiệm (Trang 66). Đáp án bài tập trắc nghiệm (Trang 101). Bài 4 . Khoảng cách trong không gian (Trang 102). Dạng 1. Khoảng cách điểm đến mặt phẳng (Trang 102). + Bài toán 1. Sử dụng công thức thể tích để tìm khoảng cách (Trang 103). + Bài toán 2. Khoảng cách từ điểm đến mặt phẳng chứa đường cao hình chóp (Trang 105). + Bài toán 3. Khoảng cách từ chân đường cao của hình chóp đến mặt bên (Trang 107). + Bài toán 4. Khoảng cách từ một điểm bất kỳ đến mặt bên của hình chóp (Trang 111). Dạng 2. Khoảng cách giữa hai đường thẳng chéo nhau (Trang 115). Dạng 3. Cac khoảng cách đối với lăng trụ (Trang 120). Dạng 4. Thể tích khối đa diện liên quan khoảng cách (Trang 125). Bài tập trắc nghiệm (Trang 129). Đáp án bài tập trắc nghiệm (Trang 141). Ngoài bản file PDF, thầy Hoàng Xuân Nhàn còn chia sẻ bản file WORD (.docx) nhằm hỗ trợ quý thầy, cô giáo trong việc biên soạn tài liệu học tập và giảng dạy.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC khái niệm số phức và các phép toán của số phức
Tài liệu gồm 32 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) khái niệm số phức và các phép toán của số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC khái niệm số phức và các phép toán của số phức: A. LÝ THUYẾT 1. Khái niệm về số phức. 2. Các phép toán số phức. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Thực hiện các phép toán của số phức, tìm phần thực phần ảo. Dạng 2. Tìm số phức liên hợp, tính môđun số phức. Dạng 3. Bài toán liên quan đến điểm biểu diễn số phức. Dạng 4. Tìm số phức thỏa mãn điều kiện cho trước. Dạng 5: Bài toán tập hợp điểm biểu diễn số phức.
Lý thuyết và bài tập trắc nghiệm số phức - Phùng Hoàng Em
Tài liệu gồm 30 trang tóm tắt lý thuyết số phức và tuyển chọn các bài tập trắc nghiệm số phức có đáp án giúp học sinh học tốt chương trình Giải tích 12 chương 4 và ôn tập thi THPT Quốc gia môn Toán, tài liệu được biên soạn bởi thầy Phùng Hoàng Em. BÀI 1 . NHẬP MÔN SỐ PHỨC Vấn đề 1 . Xác định các đại lượng liên quan đến số phức. 1. Biến đổi số phức z về dạng A + Bi. 2. Khi đó: phần thực là A, phần ảo là B, số phức liên hợp là A + Bi = A − Bi, mô-đun bằng √(A^2 +B^2). Vấn đề 2 . Số phức bằng nhau. a + bi = c + di ⇔ a = c và b = d. a + bi = 0 ⇔ a = 0 và b = 0. Vấn đề 3 . Điểm biểu diễn số phức. Mỗi số phức z = a + bi được biểu diễn bởi duy nhất một điểm M(a,b) trên mặt phẳng tọa độ. Vấn đề 4 . Lũy thừa với đơn vị ảo. Các công thức biến đổi: i2 = −1, i3 = −i, in = 1 nếu n chia hết cho 4, in = i nếu n chia 4 dư 1, in = −1 nếu n chia 4 dư 2, in = −i nếu n chia 4 dư 3. Tổng n số hạng đầu của một cấp số cộng: Sn = n/2(u1 + un) hoặc Sn = n/2(2u1 + (n − 1)d), với u1 là số hạng đầu, d là công sai. Tổng n số hạng đầu của một cấp số nhân: Sn = u1.(1 − qn)/(1 − q), với u1 là số hạng đầu, q là công bội (q khác 1). [ads] BÀI 2 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH Vấn đề 1 . Phương trình với hệ số phức. Trong chương trình, ta chỉ xét phương trình dạng này với ẩn z bậc nhất. + Ta giải tương tự như giải phương trình bậc nhất trên tập số thực. + Thực hiện các biến đổi đưa về dạng z = A + Bi. Vấn đề 2 . Phương trình bậc hai với hệ số thực và một số phương trình quy về bậc hai. Xét phương trình ax2 + bx + c = 0, với a, b, c ∈ R và a khác 0. Đặt ∆ = b2 − 4ac, khi đó: 1. Nếu ∆ ≥ 0 thì phương trình có nghiệm x = (−b ±√∆)/2a. 2. Nếu ∆ < 0 thì phương trình có nghiệm x = (−b ± i√|∆|)/2a. 3. Định lý Viet: x1 + x2 = −b/a và x1.x2 = c/a. Vấn đề 3 . Xác định số phức bằng cách giải hệ phương trình. Gọi z = a + bi, với a, b ∈ R. + Nếu đề bài cho dạng hai số phức bằng nhau, ta áp dụng một trong hai công thức sau: a + bi = c + di ⇔ a = c hay b = d, a + bi = 0 ⇔ a = 0 hay b = 0. + Nếu đề bài cho phương trình ẩn z và kèm theo một trong các ẩn z, |z| … Ta thay z = a + bi vào điều kiện đề cho, đưa về “hai số phức bằng nhau”. + Nếu đề cho z thỏa hai điều kiện riêng biệt thì từ 2 điều kiện đó, ta tìm được hệ phương trình liên quan đến a, b. Giải tìm a, b. BÀI 3 . BIỄU DIỄN HÌNH HỌC CỦA SỐ PHỨC Vấn đề . Biễu diễn hình học của số phức. Trong mặt phẳng toạ độ Oxy, giả sử: M(x;y) là điểm biểu diễn của z = x + yi (x, y ∈ R), N(x’;y’) là điểm biểu diễn của z’ = x’ + y’i (x’, y’ ∈ R), I(a;b) là điểm biểu diễn của z0 = a + bi cho trước (a, b ∈ R). Khi đó, ta có các kết quả sau: + |z| = √(x^2 + y^2) = OM (khoảng cách từ điểm M đến gốc toạ độ O). + |z – z’| = √(x’ – x)2(y’ – y)2 = MN (khoảng cách giữa M và N). + |z – z0| ≤ R ⇔ (x – a)^2 + (y – b)^2 ≤ R^2: hình tròn tâm I(a; b), bán kính R. + |z – z0| = R ⇔ (x – a)^2 + (y – b)^2 = R^2: đường tròn tâm I(a; b), bán kính R.
936 bài tập trắc nghiệm số phức
giới thiệu thiệu đến thầy, cô và các em học sinh khối 12 tài liệu tuyển tập 936 bài tập trắc nghiệm số phức ôn thi THPT Quốc gia môn Toán, tài liệu gồm 266 trang gồm 453 câu hỏi số phức và các phép toán, 256 câu phương trình và các bài tập tìm số phức thỏa mãn điều kiện, 227 câu biểu diễn hình học của số phức, tìm tập hợp điểm. Mục lục tài liệu 936 bài tập trắc nghiệm số phức: Phần 1 . Tóm tắt lý thuyết. Phần 2 . Số phức và các phép toán (453 câu). A – Bài tập (260 câu). B – Hướng dẫn giải. C – Bài tập tự luyện (193 câu). [ads] Phần 3 . Phương trình và các bài tập tìm số phức thỏa mãn điều kiện (256 câu). A – Bài tập (130 câu). B – Hướng dẫn giải. C – Bài tập tự luyện (126 câu). Phần 4 . Biểu diễn hình học của số phức, tìm tập hợp điểm (227 câu). A – Bài tập (138 câu). B – Hướng dẫn giải. C – Bài tập tự luyện (89 câu). Trong mỗi phần đều bao gồm các bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết, nhằm giúp các em học sinh nắm được phương pháp, kỹ năng giải toán số phức, và phần bài tập trắc nghiệm số phức tự luyện, giúp các em tự kiểm tra lại các kiến thức đã tiếp thu được. Tài liệu còn hướng dẫn sử dụng máy tính cầm tay Casio – Vinacal để giải nhanh một số bài tập trắc nghiệm số phức.
Bài tập trắc nghiệm số phức có đáp án - Nguyễn Hữu Nhanh Tiến
Tài liệu gồm 12 được biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến tổng hợp 99 bài toán trắc nghiệm số phức có đáp án trong chương trình Giải tích 12 chương 4, các bài toán được phân dạng và tuyển chọn từ các đề thi thử môn Toán 2018. Các dạng toán trong tài liệu : 1. KHÁI NIỆM SỐ PHỨC 1.1. Xác định các yếu tố cơ bản của số phức 1.2. Biểu diễn hình học của số phức cơ bản 2. PHÉP CỘNG, TRỪ VÀ NHÂN SỐ PHỨC 2.1. Thực hiện phép tính 2.2. Xác định các yếu tố cơ bản qua các phép tính 2.3. Bài toán quy về phương trình, hệ phương trình nghiệm thực 2.4. Bài toán tập hợp điểm [ads] 3. PHÉP CHIA SỐ PHỨC 3.1. Xác định các yếu tố cơ bản qua các phép tính 3.2. Bài toán quy về phương trình, hệ phương trình nghiệm thực 3.3. Bài toán tập hợp điểm 4. PHƯƠNG TRÌNH BẬC HAI HỆ SỐ THỰC 4.1. Giải phương trình 4.2. Tính toán biểu thức nghiệm 5. CỰC TRỊ CỦA SỐ PHỨC