Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kĩ thuật xử lí phương trình - hệ phương trình vô tỉ - Đoàn Trí Dũng

Tài liệu gồm 17 trang hướng dẫn các phương pháp xử lí phương trình – hệ phương trình vô tỉ thường gặp trong các đề thi. PHẦN I: PHƯƠNG PHÁP XÉT TỔNG VÀ HIỆU Phương pháp xét tổng và hiệu sử dụng cho các phương trình vô tỷ hoặc một phương trình có trong một hệ phương trình ở dạng √A ± √B = C. Điều kiện sử dụng ở chỗ ta nhận thấy C là một nhân tử của (A – B). PHẦN II: DỰ ĐOÁN NHÂN TỬ TỪ NGHIỆM VÔ TỶ Phương pháp này tận dụng nghiệm vô tỷ mà máy tính đã dò được để đoán trước nhân tử của phương trình, hệ phương trình. Để sử dụng kỹ thuật này, chúng ta cần phải nắm được tốt quy tắc dò nghiệm SHIFT SOLVE. PHẦN III: HỆ SỐ BẤT ĐỊNH Mục đích của phương pháp hệ số bất định là tạo ra các thêm bớt giả định sao cho có nhân tử chung rồi đồng nhất hệ số để tìm ra các giả định đó. Hệ số bất định có bản chất là phân tích nhân tử và có tác dụng mạnh trong các bài toán có nhiều hơn 1 nghiệm. [ads] PHẦN IV: ĐẠO HÀM MỘT BIẾN + Kỹ thuật 1: Coi x là ẩn, y là tham số, tính đạo hàm f’x(x, y) và chứng minh hàm số đơn điệu và liên tục theo x. + Kỹ thuật 2: Phương trình f(x) = 0 có tối đa 1 nghiệm nếu f(x) đơn điệu và liên tục theo x. + Kỹ thuật 3: f(x) = f(y) → x = y nếu f(x) đơn điệu và liên tục theo x. PHẦN V: LƯỢNG GIÁC HÓA PHẦN VI: ĐẶT 2 ẨN PHỤ + Kỹ thuật 1: Đặt 2 ẩn phụ để đưa về hệ phương trình cơ bản. + Kỹ thuật 2: Đặt 2 ẩn phụ để phân tích đa thức thành nhân tử. PHẦN VII: PHƯƠNG PHÁP ĐÁNH GIÁ + Kỹ thuật 1: Đưa phương trình, hệ phương trình về dạng A^2 + B^2 ≤ 0. + Kỹ thuật 2: Sử dụng Cauchy với những bài có căn bậc lớn. + Kỹ thuật 3: Sử dụng Bunyakovsky. + Kỹ thuật 4: Sử dụng Minkowski. + Kỹ thuật 5: Sử dụng Schwartz. + Kỹ thuật 6: Sử dụng bất đẳng thức Jensen dành cho hàm lồi, hàm lõm.

Nguồn: toanmath.com

Đọc Sách

Sử dụng liên hợp hằng số giải phương trình chứa căn (liên hợp 2) - Lương Tuấn Đức
Tài liệu gồm 119 trang hướng dẫn sử dụng liên hợp hằng số giải phương trình chứa căn (liên hợp 2), các bài toán trong tài liệu đều được phần tích và giải chi tiết, tài liệu được biên soạn bởi thầy Lương Tuấn Đức. Phương pháp sử dụng biến đổi tương đương – nâng cao lũy thừa là một phương pháp cơ bản, đơn giản nhất, các bạn đã bước đầu làm quen thông qua 7 tiêu mục. Hầu hết các phương pháp khác đều ít nhiều quy về dạng cơ bản nâng lũy thừa, điều quan trọng là quá trình thu gọn bài toán. Tiếp tục dựa trên nền tảng ấy, mang tính kế thừa và phát huy thêm một bậc, phương pháp sử dụng Đại lượng liên hợp – Trục căn thức – Hệ tạm thời là một phương pháp mạnh và có nhiều ưu việt, có hiệu lực với nhiều lớp phương trình, bất phương trình. Tiếp theo phần 1, tài liệu này trân trọng giới thiệu và gửi tới toàn thể bạn đọc Lý thuyết sử dụng đại lượng liên hợp – trục căn thức – hệ tạm thời (phần 2). Nội dung chủ đạo là các ví dụ minh họa mở đầu cho các bài toán liên quan đến xác định nghiệm (trường hợp 1 nghiệm nguyên – nghiệm hữu tỷ), kỹ thuật liên hợp hằng số và xử lý, đánh giá phương trình hệ quả, tạm thời dừng chân với lớp bài toán chứa căn bậc hai. [ads] Các nội dung chủ đạo của tài liệu: + SỬ DỤNG ĐẠI LƯỢNG LIÊN HỢP – TRỤC CĂN THỨC – HỆ PHƯƠNG TRÌNH TẠM THỜI ĐỐI VỚI BÀI TOÁN CĂN BẬC HAI. + XÁC ĐỊNH NGHIỆM – LIÊN HỢP HẰNG SỐ. + ĐÁNH GIÁ – XỬ LÝ HỆ QUẢ SAU LIÊN HỢP. + BÀI TOÁN NHIỀU CÁCH GIẢI.
Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba) - Lương Tuấn Đức
Tài liệu gồm 121 trang hướng dẫn sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh THPT – Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác. Nội dung mang tính kế thừa và phát huy với phương châm chủ đạo là dùng hai ẩn phụ đưa phương trình cho trước về hệ phương trình, bao gồm hệ cơ bản, hệ đối xứng và gần đối xứng (tiếp theo), xoay quanh các bài toán với căn bậc ba. Đây vẫn là một trong những phương án hữu tỷ hóa phương trình chứa căn, giảm thiểu đại bộ phận sự cồng kềnh và sai sót trong tính toán. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. [ads] Kiến thức và kỹ năng cần chuẩn bị khi tìm hiểu tài liệu: 1. Nắm vững các phép biến đổi đại số cơ bản (nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức). 2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt. 3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai. 4. Nắm vững kiến thức về đa thức đồng bậc, các thao tác cơ bản với phương trình một ẩn phụ. 5. Bước đầu thực hành giải và biện luận các bài toán phương trình bậc hai, bậc cao với tham số, giải hệ phương trình bằng phương pháp thế, phương pháp cộng đại số, giải hệ phương trình đối xứng loại 1, loại 2; hệ phương trình đồng bậc; hệ phương trình đa ẩn. 6. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.
Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc hai) - Lương Tuấn Đức
Tài liệu gồm 130 trang được biên soạn bởi thầy Lương Tuấn Đức hướng dẫn sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc hai), đây là dạng toán thường gặp trong chương trình Đại số 10 chương 3 và chương 4, các bài toán trong tài liệu đều được phân tích và giải quyết chi tiết. Nội dung chủ đạo là dùng hai hoặc nhiều ẩn phụ đưa phương trình cho trước về hệ phương trình, bao gồm hệ cơ bản, hệ đối xứng và gần đối xứng, một trong những phương án hữu tỷ hóa phương trình chứa căn, giảm thiểu đại bộ phận sự cồng kềnh và sai sót trong tính toán. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. [ads] Kiến thức và kỹ năng chuẩn bị khi tìm hiểu tài liệu: 1. Nắm vững các phép biến đổi đại số cơ bản (nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức). 2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt. 3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai. 4. Nắm vững kiến thức về đa thức đồng bậc, các thao tác cơ bản với phương trình một ẩn phụ. 5. Bước đầu thực hành giải và biện luận các bài toán phương trình bậc hai, bậc cao với tham số, giải hệ phương trình bằng phương pháp thế, phương pháp cộng đại số, giải hệ phương trình đối xứng loại 1, loại 2; hệ phương trình đồng bậc; hệ phương trình đa ẩn. 6. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.
Sử dụng hai ẩn phụ đồng bậc giải phương trình chứa căn (ẩn phụ 4) - Lương Tuấn Đức
Tài liệu gồm 118 trang hướng dẫn phương pháp sử dụng hai ẩn phụ đồng bậc giải phương trình chứa căn (ẩn phụ 4), các bài toán đều được giải chi tiết, tài liệu được biên soạn bởi thầy Lương Tuấn Đức. Nội dung tài liệu chủ yếu xoay quanh lớp các bài toán chứa căn thức được giải thông qua ý tưởng sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp bậc hai cơ bản kết hợp phân tích nhân tử – phương trình tích. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. Mức độ các bài toán đã nâng cao một chút, do đó độ khó đã tăng dần so với các phần trước (đã được chia sẻ trên ), đồng nghĩa đòi hỏi sự tư duy logic, nhạy bén kết hợp với vốn kiến thức nhất định của độc giả. Tài liệu nhỏ phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT Chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác. [ads] Các nội dung chủ đạo của tài liệu: + Sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp. + Đặt hai ẩn phụ – phương trình đồng bậc bậc hai. + Đặt hai ẩn phụ – phân tích nhân tử. + Bài toán nhiều cách giải. Kiến thức và kỹ năng cần chuẩn bị khi tìm hiểu tài liệu: 1. Nắm vững các phép biến đổi đại số cơ bản (nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức). 2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt. 3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai. 4. Nắm vững kiến thức về đa thức đồng bậc, các thao tác cơ bản với phương trình một ẩn phụ. 5. Bước đầu thực hành giải và biện luận các bài toán phương trình bậc hai, bậc cao với tham số. 6. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.