Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp bài tập trắc nghiệm thể tích, mặt cầu, mặt nón, mặt trụ - Nhóm Toán

Tài liệu gồm 27 trang với 75 bài toán trắc nghiệm thuộc chuyên đề thể tích khối đa diện và mặt cầu – mặt nón – mặt trụ có lời giải chi tiết. Các bài toán được chia thành 4 dạng, trong mỗi dạng bài tập được sắp xếp theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dạng cao. + Dạng 1. Khái niệm khối đa diện + Dạng 2. Khối đa diện lồi và khối đa diện đều + Dạng 3. Thể tích khối đa diện + Dạng 4. Mặt nón, mặt trụ và mặt cầu Trích dẫn tài liệu : + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Mặt trụ và mặt nón có chứa các đường thẳng B. Mọi hình chóp luôn nội tiếp trong mặt cầu C. Có vô số mặt phẳng cắt mặt cầu theo những đường tròn bằng nhau D. Luôn có hai đường tròn có bán kính khác nhau cùng nằm trên một mặt nón [ads] + Một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm3. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc dạng hình trụ và được sản xuất cùng một nguyên vật liệu. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình trụ và chiều cao bằng bán kính đáy B. Hình trụ và chiều cao bằng đường kính đáy C. Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy D. Hình hộp chữ nhật và cạnh bên bằng cạnh đáy + Khẳng định nào dưới đây là khẳng định SAI? A. Quay đường tròn xung quanh một dây cung của nó luôn tạo ra một hình cầu B. Quay một tam giác nhọn xung quanh cạnh của nó không thể tạo ra hình nón C. Quay hình vuông xung quanh cạnh của nó luôn sinh ra hình trụ có r, h, l bằng nhau D. Quay tam giác đều quanh đường cao của nó luôn tạo ra một hình nón

Nguồn: toanmath.com

Đọc Sách

Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại nguyên hàm, tích phân
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (facebook: Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại nguyên hàm, tích phân (không bao gồm ứng dụng của tích phân) từ phần 1 đến phần 10; giúp học sinh học nâng cao chương trình Giải tích 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại nguyên hàm, tích phân : + Hàm số y = f(x) liên tục trên R thỏa mãn 2f(x)f'(x) + 108x^2 = (8x + 9)f(x) + (4x^2 + 9x)f'(x). Tính ∫[4f(x) + 9f'(x)]dx biết rằng đồ thị hàm số y = f(x) đi qua gốc tọa độ và tiếp tuyến của đồ thị luôn cắt trục hoành. + Cho hàm số y = f(x), hàm số y = f'(x) có đồ thị như hình vẽ bên. Biết rằng diện tích hình phẳng giới hạn bởi trục Ox và đồ thị hàm số y = f'(x) trên đoạn [-2;1] và [1;4] lần lượt bằng 9 và 12. Cho f (1) = 3, giá trị biểu thức f (-2) + f (4) bằng? [ads] + Hàm số y = f(x) có đạo hàm trên R thỏa mãn f'(x) ≥ x^4 + 2/x^2 – 2x với x > 0 và f (1) = -1. Mệnh đề nào sau đây đúng? A. Phương trình f(x) có một nghiệm trên (0;1). B. Phương trình f(x) có đúng ba nghiệm trên (0;+vc). C. Phương trình f(x) có một nghiệm trên (1;2). D. Phương trình f(x) có một nghiệm trên (2;5).
Bài tập VD VDC nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 49 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn 69 câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng, mức độ vận dụng và vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phù hợp với đối tượng học sinh có học lực khá – giỏi, ôn thi điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu bài tập VD – VDC nguyên hàm, tích phân và ứng dụng: + Vấn đề 1. Nguyên hàm. + Vấn đề 2. Tích phân. + Vấn đề 3. Ứng dụng nguyên hàm, tích phân để giải toán.
Bài tập nguyên hàm, tích phân và ứng dụng - Diệp Tuân
Tài liệu gồm 301 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán trắc nghiệm nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3), các bài tập trong tài liệu đầy đủ các mức độ nhận thức: nhận biết (NB), thông hiểu (TH), vận dụng (VD) và vận dụng cao (VDC). Khái quát nội dung tài liệu bài tập nguyên hàm, tích phân và ứng dụng – Diệp Tuân: BÀI 1 . NGUYÊN HÀM. Dạng 1. Tìm họ nguyên hàm của các hàm cơ bản. Dạng 2. Sử dụng các kỹ thuật đặc biệt để tìm họ nguyên hàm của các hàm phức tạp. + Kỹ thuật 1. Nhân đa thức để tìm họ nguyên hàm có dạng tích của các đa thức. + Kỹ thuật 2. Sử dụng công thức lũy thừa để tìm họ nguyên hàm căn thức. + Kỹ thuật 3. Sử dụng công thức cộng lượng giác để tìm họ nguyên hàm của tích của các hàm lượng giác. + Kỹ thuật 4. Sử dụng công thức hạ bậc để tìm họ nguyên hàm của các hàm lượng giác có mũ bậc chẵn. + Kỹ thuật 5. Sử dụng kỹ thuật tách hạng tử, nhóm hạng tử, thêm bớt hạng tử để tìm họ nguyên hàm của các hàm phân thức hữu tỉ. BÀI 2 . CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM CƠ BẢN. Dạng 1. Phương pháp đổi biến số. Dạng 2. Phương pháp từng phần. + Loại 1. P(x) nhân sinx hoặc cosx trong đó P(x) là đa thức. + Loại 2. P(x) nhân e^(ax + b) trong đó P(x) là đa thức. + Loại 3. P(x) nhân ln(mx +  n) trong đó P(x) là đa thức. + Loại 4. e^x nhân sinx hoặc cosx. + Loại 5. Đổi biển rồi từng phần. Dạng 3. Phương pháp lấy nguyên hàm hai vế (tích phân hàm ẩn). [ads] BÀI 3 . TÍCH PHÂN. Dạng 1. Tính tích phân cơ bản. Dạng 2. Phương pháp đổi biến loại 1. Dạng 3. Phương pháp đổi biến loại 2. + Loại 1. Đổi biến hàm căn thức. + Loại 2. Đổi biến hàm lượng giác. + Loại 3. Đổi biến một số tích phân đặc biệt. Dạng 4. Phương pháp từng phần. + Bài toán 1. Tích phân từng phần thuộc dạng f(x) nhân ln(g(x)). + Bài toán 2. Tích phân từng phần thuộc dạng f(x) nhân sinax hoặc cosax hoặc e^ax. + Bài toán 3. Tích phân từng phần thuộc dạng e^ax nhân sinax hoặc cosax. BÀI 4 . ỨNG DỤNG TÍNH DIỆN TÍCH – THỂ TÍCH. Dạng 1. Tính diện tích hình phẳng giới hạn bởi một đồ thị hàm số y = f(x), trục hoành Ox và hai đường thẳng x = a, x = b. Dạng 2. Tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b. Dạng 3. Tính diện tích hình phẳng giới hạn bởi ba đồ thị hàm số. Dạng 4. Tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số có dạng x = f(y) và hai đường thẳng y = a, y = b. Dạng 5. Tính thể tích vật thể giới hạn bởi một đồ thị hàm số có dạng y = f(x), x = a, x = b và trục hoành y = 0 khi quay quanh trục hoành (Ox). Dạng 6. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x), x = a, x = b khi quay quanh trục hoành. Dạng 7. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số x = f(y), x = g(y), y = a, y = b khi quay quanh trục tung Oy. Dạng 8. Ứng dụng trong thực tế tính vận tốc, quãng đường, diện tích và thể tích vật thể.
59 bài tập tích phân hàm ẩn có lời giải chi tiết
Tài liệu gồm 27 trang tuyển chọn 59 bài tập tích phân hàm ẩn có lời giải chi tiết, đây là lớp bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong chương trình Giải tích 12 chương 3 (Nguyên hàm, Tích phân và Ứng dụng) và thường xuất hiện trong các đề thi thử THPT Quốc gia môn Toán. Trích dẫn tài liệu 59 bài tập tích phân hàm ẩn có lời giải chi tiết: + Cho hàm số f(x) xác định trên R\{-1;1} và thỏa mãn f'(x) = 1/(x^2 – 1), f(-3) + f(3) = 0 và f(-1/2) + f(1/2) = 2. Tính giá trị của biểu thức P = f(0) + f(4). + Cho hàm số liên tục trên đoạn [-ln2;ln2] và thỏa mãn f(x) + f(-x) = 1/(e^x + 1). Biết tích phân từ -ln2 đến ln2 của f(x)dx bằng aln2 + bln3 với a và b thuộc Q. Tính giá trị của P = a + b. + Xét hàm số f(x) liên tục trên đoạn [-1;2] và thỏa mãn f(x) = √(x + 2) + xf(3 – x^2). Tính giá trị tích phân từ -1 đến 2 của f(x)dx. + Cho hàm số f(x) không âm thỏa mãn điều kiện f(x).f'(x) = 2x.√(f2(x) + 1) và f(0) = 0. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [1;3] bằng? + Cho hàm số f(x) thỏa mãn f(2) = -1/25; f'(x) = 4x^3.[f(x)]^2 với mọi x thuộc R. Giá trị của f(1) là?