Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 2017 môn Toán Đoàn Quỳnh

Nội dung Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 2017 môn Toán Đoàn Quỳnh Bản PDF - Nội dung bài viết Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016-2017 môn Toán Đoàn Quỳnh Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016-2017 môn Toán Đoàn Quỳnh Sách ôn tập này bao gồm 246 trang và được chia thành 2 phần chính: Phần 1: Ôn tập theo chủ đề: Phần này tập trung vào việc ôn lại những kiến thức cơ bản, kỹ năng quan trọng cần thiết cho kỳ thi THPT Quốc gia môn Toán. Ngoài ra, sách cũng cung cấp một số câu hỏi trắc nghiệm theo 7 chủ đề chương trình Toán lớp 12. Điều này giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải các bài toán một cách hiệu quả. Phần 2: Một số đề tự luyện: Phần này cung cấp 9 đề thi tự luyện, được biên soạn theo đề minh họa của Bộ Giáo dục và Đào tạo đã được công bố. Đây là cơ hội tuyệt vời để học sinh tự kiểm tra năng lực và chuẩn bị tốt nhất cho kỳ thi sắp tới. Sách được xuất bản bởi Nhà xuất bản Giáo dục Việt Nam, đảm bảo chất lượng và tính chính xác trong từng bài học. Đây sẽ là nguồn tư liệu hữu ích không chỉ cho học sinh mà còn cho giáo viên và các bậc phụ huynh quan tâm đến việc chuẩn bị cho kỳ thi quan trọng này.

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu Bản PDF - Nội dung bài viết Trường học mở cửa trở lại sau thời gian nghỉ kéo dài Trường học mở cửa trở lại sau thời gian nghỉ kéo dài Sau thời gian nghỉ học kéo dài do ảnh hưởng của dịch bệnh, các trường THPT trên khắp cả nước đã bắt đầu cho học sinh quay trở lại trường. Đây là lúc các học sinh lớp 12 cần tự ôn tập để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học trong năm học 2019 – 2020. Dịch bệnh đã gây ra nhiều thách thức cho hệ thống giáo dục, khiến cho việc học tập trở nên hiệu quả hơn. Vì vậy, việc ôn tập kiến thức từ trước thành ra cực kỳ quan trọng, giúp học sinh tự tin hơn khi tham gia vào các kỳ thi quan trọng. Các em học sinh cũng nên lập kế hoạch ôn tập hợp lý, chia đều thời gian và tập trung vào những môn học mình yếu để nâng cao điểm số. Hơn nữa, việc tham gia vào các bài tập trắc nghiệm bài toán tối ưu cũng là một phương pháp hiệu quả giúp củng cố kiến thức và rèn luyện kỹ năng giải quyết vấn đề cho học sinh. Chúc các em học sinh lớp 12 có một kỳ thi thành công và đạt kết quả cao trong năm học này!
Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế Bản PDF - Nội dung bài viết Khái quát kiến thức về lãi suất ngân hàng và bài toán tăng trưởng dân sốI. Các dạng toán về lãi suất ngân hàngII. Bài toán tăng trưởng dân sốBài tập trắc nghiệm và đáp án Khái quát kiến thức về lãi suất ngân hàng và bài toán tăng trưởng dân số Trong phần này, chúng ta sẽ tóm tắt những kiến thức cơ bản về lãi suất ngân hàng và bài toán tăng trưởng dân số. I. Các dạng toán về lãi suất ngân hàng 1. Lãi đơn: Được tính dựa trên số tiền gửi và tỷ lệ lãi suất cố định. 2. Lãi kép: Là lãi được tính trên số tiền gửi cũ và lãi cũ. 3. Lãi kép liên tục: Là lãi được tính trên số tiền gửi ban đầu và lãi được cộng dồn liên tục. 4. Công thức tính tiền gửi hàng tháng cho vay: cho thuê nhà, cho thuê xe, etc. 5. Công thức tính tiền gửi ngân hàng và rút tiền gửi hàng tháng. 6. Công thức tính tiền vay vốn trả góp: Cần tính số tiền phải trả mỗi tháng. 7. Công thức tính tăng lương: Tính lương theo tỷ lệ tăng hàng năm. II. Bài toán tăng trưởng dân số Đây là bài toán liên quan đến việc dự đoán tăng trưởng dân số trong tương lai dựa trên các yếu tố như tỷ lệ sinh, tỷ lệ chết, và tỷ lệ nhập cư. Bài tập trắc nghiệm và đáp án Trong phần này, chúng ta sẽ cùng giải những bài tập trắc nghiệm liên quan đến lãi suất ngân hàng và bài toán tăng trưởng dân số. Các đáp án và hướng dẫn giải cũng được cung cấp để giúp bạn hiểu rõ hơn về chủ đề này.
Phương pháp hàm số đặc trưng Nguyễn Văn Rin
Nội dung Phương pháp hàm số đặc trưng Nguyễn Văn Rin Bản PDF - Nội dung bài viết Phương pháp hàm số đặc trưng của Nguyễn Văn Rin Phương pháp hàm số đặc trưng của Nguyễn Văn Rin Tài liệu này bao gồm 43 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Văn Rin. Trong tài liệu, thầy Rin trình bày cơ sở lý thuyết và giới thiệu một số ví dụ cụ thể áp dụng phương pháp hàm số đặc trưng trong các trường hợp khác nhau. Việc này giúp sinh viên hiểu rõ hơn về cách áp dụng phương pháp này trong thực tế và nâng cao kỹ năng giải quyết vấn đề của họ.
Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT
Nội dung Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT Bản PDF - Nội dung bài viết Cách làm bài nhanh chóng với tài liệu "Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT" Cách làm bài nhanh chóng với tài liệu "Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT" Tài liệu "Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT" là một công cụ hữu ích giúp học sinh khối 12 ôn tập hiệu quả cho kỳ thi THPT Quốc gia. Với 283 trang, tài liệu cung cấp hướng dẫn chi tiết và dễ hiểu về cách giải nhanh các dạng bài tập thường gặp trong đề thi môn Toán. Tác giả đã phân tích từng bài toán một và cung cấp lời giải tự luận trước khi giới thiệu các "mẹo" giúp tìm nhanh đáp án. Các công thức giải nhanh được thiết lập từ các bài toán tổng quát hóa, giúp học sinh tiết kiệm thời gian khi làm bài. Nội dung tài liệu được chia thành nhiều phần, từ việc ứng dụng đạo hàm cho quan hệ giữa tính đơn điệu và đạo hàm của hàm số đến việc giải các bài tập về số phức và phương pháp tọa độ trong không gian. Mỗi chủ đề được trình bày một cách logic và hệ thống, giúp học sinh hiểu rõ vấn đề và áp dụng linh hoạt khi làm bài. Tài liệu cũng đưa ra các ví dụ minh họa và bài tập để học sinh rèn luyện kỹ năng giải bài nhanh chóng và chính xác. Bên cạnh đó, việc sử dụng máy tính cầm tay như Casio hoặc Vinacal cũng được khuyến khích để tăng cường khả năng giải bài tính toán phức tạp. Tóm lại, tài liệu "Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT" là một nguồn tư liệu quý giá giúp học sinh nắm vững kiến thức và kỹ năng cần thiết cho kỳ thi THPT Quốc gia. Hãy sử dụng tài liệu này để chuẩn bị tốt nhất cho bài thi sắp tới!