Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Đắk Nông

Nội dung Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Đắk Nông Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2022 - 2023 sở GD&ĐT Đắk Nông Đề tuyển sinh môn Toán (chung) năm 2022 - 2023 sở GD&ĐT Đắk Nông Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 - 2023 của sở GD&ĐT Đắk Nông. Kỳ thi sẽ diễn ra vào ngày ... tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GD&ĐT Đắk Nông: + Giải bài toán sau bằng cách lập phương trình: Thành phố Gia Nghĩa lên kế hoạch xét nghiệm Covid-19 cho 1000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 50 người. Vì thế, việc xét nghiệm hoàn thành sớm hơn kế hoạch 1 giờ. Hỏi theo kế hoạch, mỗi giờ thành phố Gia Nghĩa xét nghiệm được bao nhiêu người? + Cho nửa đường tròn đường kính AD. Lấy điểm B thuộc nửa đường tròn (B khác A và D), trên cung BD lấy điểm C (C khác B và D). Hai dây AC và BD cắt nhau tại điểm E. Kẻ đoạn thẳng EF vuông góc với AD (F thuộc AD). a) Chứng minh tứ giác ABEF nội tiếp. b) Chứng minh AE.AC = AF.AD. c) Chứng minh E là tâm đường tròn nội tiếp tam giác BFC. + Cho 4044 2022 2022 4x 9x 6 P x 2. Tìm giá trị của x để biểu thức P đạt giá trị nhỏ nhất.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 2) năm 2023 - 2024 trường ĐHKH Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (vòng 2 – chuyên Toán và chuyên Tin) năm học 2023 – 2024 trường Đại học Khoa học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 2) năm 2023 – 2024 trường ĐHKH Huế : + Trên mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m + 1)x − 2m + 3 (m là tham số) và parabol (P): y = x2. Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt. Gọi x1, x2 lần lượt là hoành độ hai giao điểm, xác định m để |x1|, |x2| là độ dài hai cạnh của một hình chữ nhật có độ dài đường chéo bằng 10. + Tìm tất cả các số nguyên n để A = n2 + 4n + 7 là một số chính phương. Chứng minh rằng M = (p − 1)(p + 1) chia hết cho 12 với p là số nguyên tố lớn hơn 3. + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Điểm C thuộc đường tròn (O) sao cho C và O cùng thuộc nửa mặt phẳng bờ là đường thẳng AB. Tiếp tuyến của đường tròn (O) tại điểm C cắt đường thẳng AB tại D. Đường tròn tâm D bán kính DC cắt đường tròn (O) tại điểm thứ hai E, cắt đường tròn (O’) tại F và G trong đó F nằm bên trong đường tròn (O). Gọi H là giao điểm của DO với CE, K là giao điểm của DO’ và FG. a) Chứng minh DC2 = DA.DB và DG là tiếp tuyến của đường tròn (O’). b) Chứng minh tứ giác OHKO’ nội tiếp. c) Chứng minh CE, FG và AB đồng quy.
Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 1) năm 2023 - 2024 trường ĐHKH Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (vòng 1) năm học 2023 – 2024 trường Đại học Khoa học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 1) năm 2023 – 2024 trường ĐHKH Huế : + Theo kế hoạch, một xưởng phải may xong 560 bộ quần áo trong thời gian quy định với năng suất mỗi ngày là như nhau. Đến khi thực hiện, do tăng năng suất nên mỗi ngày xưởng đó may được nhiều hơn 10 bộ quần áo so với kế hoạch. Vì thế, xưởng đã hoàn thành trước kế hoạch 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng đó phải may xong bao nhiêu bộ quần áo? + Qua điểm A nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến AEF (AE < AF) sao cho tia AE nằm giữa hai tia AB, AO. Gọi H là giao điểm của AO và BC. a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh AB2 = AE.AF và tứ giác EFOH nội tiếp. c) Từ E vẽ đường thẳng song song với BF cắt AB tại M và cắt BC tại N. Chứng minh E là trung điểm của đoạn thẳng MN. + Một khối đồ chơi có hình dạng là một hình trụ và một hình nón chung đáy. Biết chiều cao khối đồ chơi là h = 9 cm, chiều cao hình nón là h1, chiều cao hình trụ là h2 và h2 = 2h1. Bán kính đáy hình trụ là r = 4 cm (xem hình vẽ bên). Tính thể tích của khối đồ chơi đó.
Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GDĐT thị xã Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tham khảo môn Toán kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Phú Thọ, tỉnh Phú Thọ; đề thi có đáp án và thang điểm dự kiến. Trích dẫn Đề tham khảo Toán thi vào 10 năm 2023 – 2024 phòng GD&ĐT thị xã Phú Thọ : + Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số mới lớn hơn số đã cho là 63. Tổng của số đã cho và số mới tạo thành 99. Tổng các chữ số của số đó là? + Cho hàm số y = ax2 với a ≠ 0. Kết luận nào sau đây là đúng? A. Hàm số đồng biến khi a 0 và x 0 B. Hàm số đồng biến khi a 0 và x 0 C. Hàm số đồng biến khi a 0 và x 0 D. Hàm số đồng biến khi a 0 và x = 0. + Cho hai điểm A B cố định. Một điểm C khác B di chuyển trên đường tròn (O) đường kính AB sao cho AC BC. Tiếp tuyến của đường tròn (O) tại C cắt tiếp tuyến tại A ở D cắt AB ở E. Đường thẳng đi qua E vuông góc với AB cắt AC BD lần lượt tại F G. Gọi I là trung điểm AE. a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn. b) Chứng minh rằng 2 2 AB OD BC c) Chứng minh EF 2 EG d) Chứng minh rằng trực tâm tam giác GIF là một điểm cố định.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; kỳ thi được diễn ra vào thứ Ba ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hà Nam : + Cho biểu thức A. 1. Rút gọn biểu thức A. 2. Tìm tất cả các số nguyên của x để |2A − 1| + 1 = 2A. + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và AE là đường kính của đường tròn (O). 1. Chứng minh BAD = CAE. 2. Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. 3. Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. 4. Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của đoạn thẳng PQ. Chứng minh rằng đường thẳng AN luôn đi qua một điểm cố định. + Cho a, b, c là ba số thực dương thỏa mãn điều kiện. Tìm giá trị lớn nhất của biểu thức.