Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập tọa độ không gian phân theo dạng có lời giải chi tiết - Trần Sĩ Tùng

Tài liệu gồm 67 trang, tuyển chọn bài tập các dạng toán phương pháp tọa độ không gian có lời giải chi tiết. TĐKG 01: VIẾT PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng bằng cách xác định vectơ pháp tuyến Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách Dạng 4: Viết phương trình mặt phẳng liên quan đến góc Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác Dạng 6: Các dạng khác về viết phương trình mặt phẳng TĐKG 02: VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách Dạng 5: Viết phương trình đường thẳng liên quan đến góc Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác [ads] TĐKG 03: VIẾT PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Viết phương trình mặt cầu bằng cách xác định tâm và bán kính Dạng 2: Viết phương trình mặt cầu bằng cách xác định các hệ số của phương trình Dạng 3: Các bài toán liên quan đến mặt cầu TĐKG 04: TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC Dạng 1: Xác định điểm thuộc mặt phẳng Dạng 2: Xác định điểm thuộc đường thẳng Dạng 3: Xác định điểm thuộc mặt cầu Dạng 4: Xác định điểm trong không gian Dạng 5: Xác định điểm trong đa giác

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm ôn tập chương phương pháp tọa độ trong không gian - Nguyễn Tấn Phong
Tài liệu gồm 25 trang với tóm tắt lý thuyết, công thức tính toán và bài tập ôn tập chương phương pháp tọa độ trong không gian. Tọa độ điểm – tọa độ vectơ I. Hệ trục tọa độ oxyz II. Tọa độ vectơ Một số ứng dụng và công thức: 1. Chứng minh 3 điểm a,b,c thẳng hàng; không thẳng hàng 2. D là đỉnh hình bình hành ABCD ⇔ vtAD = vtBC 3. Diện tích hình bình hành ABCD 4. Diện tích tam giác ABC 5. Chứng minh 4 điểm a, b, c, d đồng phẳng, không đồng phẳng 6. Thể tích tứ diện ABCD 7. Thể tích hình hộp ABCD.A’B’C’D’ Khoảng cách 8. Khoảng cách giữa 2 điểm A,B (độ dài đoạn thẳng AB) 9. Khoảng cách từ một điểm đến mặt phẳng 10. Khoảng cách từ điểm đến đường thẳng 11. Khoảng cách giữa 2 đường thẳng chéo nhau [ads] Công thức góc 12. Góc giữa 2 vectơ 13. Góc giữa 2 mặt phẳng 14. Góc giữa 2 đường thẳng 15. Góc giữa đường thẳng; mặt phẳng; phương trình mặt cầu I. Phương trình mặt cầu II. Vị trí tương đối giữa mặt phẳng và mặt cầu Phương trình mặt phẳng 1. Vectơ pháp tuyến 2. Phương trình tổng quát của mặt phẳng 3. Các trường hợp đặc biệt của phương trình mặt phẳng 4. Vị trí tương đối giữa 2 mặt phẳng Phương trình đường thẳng 1. Vectơ chỉ phương 2. Phương trình tham số của đường thẳng 3. Phương trình chính tắc của đường thẳng 4. Vị trí tương đối giữa 2 đường thẳng 4. Vị trí tương đối giữa đường thẳng và mặt phẳng
Các dạng bài tập phương trình đường thằng trong không gian - Đặng Ngọc Hiền, Lê Bá Bảo
Tài liệu gồm lý thuyết, phân dạng, hướng dẫn giải, ví dụ minh họa có lời giải chi tiết và bài tập trắc nghiệm có đáp án chủ đề phương trình đường thẳng trong không gian. Các dạng toán trong tài liệu: + Dạng 1: Xác định vectơ chỉ phương của đường thẳng + Dạng 2: Lập phương trình đường thẳng + Dạng 3: Xét vị trí tương đối của hai đường thẳng + Dạng 4: Vị trí tương đối của đường thẳng và mặt phẳng [ads] + Dạng 5: Hình chiếu của một điểm lên một đường thẳng + Dạng 6: Hình chiếu của một điểm lên một mặt phẳng + Dạng 7: Khoảng cách từ điểm đến đường thẳng. Khoảng cách giữa hai đường thẳng chéo nhau + Dạng 8: Góc giữa hai đường thẳng. Góc giữa đường thẳng và mặt phẳng
Bài tập trắc nghiệm hình học Oxyz - Huỳnh Văn Lượng
Tài liệu gồm 28 trang với phần tóm tắt lý thuyết, công thức và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian. Trích dẫn tài liệu : + Cho mặt phẳng (α): 4x – 2y + 3z + 1 = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2z + 4y + 6z = 0. Khi đó, mệnh đề nào sau đây là một mệnh đề sai: A. (α) cắt (S) theo một đường tròn B. (α) tiếp xúc với (S) C. (α) có điểm chung với (S) D. (α) đi qua tâm của (S) [ads] + Cho điểm M(–3; 2; 4), gọi A, B, C lần lượt là hình chiếu của M trên Ox, Oy, Oz. Mặt phẳng song song với mp(ABC) có phương trình là: A. 4x – 6y –3z + 12 = 0 B. 3x – 6y –4z + 12 = 0 C. 6x – 4y –3z – 12 = 0 D. 4x – 6y –3z – 12 = 0 Trong không gian với hệ trục toạ độ Oxyz cho các điểm A (1;0;0), B (0;2;0), C (0;0;3), D (1;2;0). Viết phương trình mặt phẳng (DA’B’) với A’, B’ là 2 đỉnh của hình hộp chữ nhật OADB.CA’D’B’. A. 6x + 3y + z – 12 = 0 B. 6x + 3y – z – 12 = 0 C .6x – 3y + z – 12 = 0 D. 6x – 3y – z + 12 = 0
113 bài tập trắc nghiệm phương trình mặt phẳng - Huỳnh Công Dũng
Tài liệu gồm 15 trang với 113 bài tập trắc nghiệm thuộc chuyên đề phương trình mặt phẳng có đáp án.