Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 10 năm học 2018 2019 sở GD và ĐT Bà Rịa Vũng Tàu

Đề thi học kỳ 1 Toán 10 năm học 2018 – 2019 sở GD và ĐT Bà Rịa – Vũng Tàu mã đề 01 gồm 2 bài thi, bài thi trắc nghiệm gồm 02 trang với 15 câu, chiếm 3,0 điểm, thời gian làm bài 30 phút, bài thi tự luận gồm 4 câu, chiếm 7,0 điểm, thời gian làm bài 60 phút, đề phần tự luận chỉ được phát sau khi đã thu bài làm phần trắc nghiệm, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 10 năm học 2018 – 2019 sở GD và ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC, gọi I, J lần lượt là trung điểm các cạnh AB và AC. Điểm M nằm trên cạnh BC sao cho MC = 2MB. Hãy phân tích vectơ AM theo hai vectơ AI và AJ. [ads] + Cho hình bình hành ABCD, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ AB là? + Tập hợp các giá trị thực của tham số m để phương trình √(x^2 + 2x + 2m) = 2x + 1 có hai nghiệm phân biệt là S =  (a;b]. Khi đó giá trị P = ab?

Nguồn: toanmath.com

Đọc Sách

Đề học kì 1 Toán 10 năm 2019 - 2020 trường THPT chuyên Vị Thanh - Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề học kì 1 Toán 10 năm 2019 – 2020 trường THPT chuyên Vị Thanh – Hậu Giang; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận.
Đề kiểm tra HK1 Toán 10 NC năm 2019 - 2020 trường THPT Thị xã Quảng Trị
Sáng thứ Bảy ngày 04 tháng 01 năm 2019, trường THPT Thị xã Quảng Trị, tỉnh Quảng Trị tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán lớp 10 năm học 2019 – 2020. Đề kiểm tra HK1 Toán 10 NC năm 2019 – 2020 trường THPT Thị xã Quảng Trị dành cho học sinh theo học chương trình Toán 10 nâng cao, đề có mã 101 và mã 103, gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra HK1 Toán 10 NC năm 2019 – 2020 trường THPT Thị xã Quảng Trị : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1;-1), B(4;-3), C(5;5). a) Xác định tọa độ điểm D để tứ giác ABCD là hình bình hành. b) Tìm điểm E trên trục hoành sao cho A, B, E thẳng hàng. c) Chứng minh rằng tam giác ABC vuông tại A và tính diện tích tam giác ABC. d) Tìm điểm M trên đường thẳng ∆: y = 2x – 1 sao cho MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất. [ads] + Cho hàm số y = x^2 – 2x – 3 có đồ thị là (P). a) Lập bảng biến thiên của hàm số đã cho. b) Tìm tọa độ giao điểm của (P) với đường thẳng d: y = x – 5. + Cho hệ phương trình: x + y = 3 và x^2 + y^2 – 3xy = m. a) Giải hệ phương trình khi m = −1. b) Tìm m để hệ phương trình đã cho có nghiệm.
Đề kiểm tra định kỳ lần 1 Toán 10 năm 2019 - 2020 sở GDĐT Bắc Ninh
Sáng thứ Ba ngày 17 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra định kỳ lần 1 môn Toán lớp 10 năm học 2019 – 2020, nhằm đánh giá tình hình học tập môn Toán của học sinh khối 10 trong giai đoạn học kỳ 1 năm học 2019 – 2020. Đề kiểm tra định kỳ lần 1 Toán 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức tự luận với 5 bài toán, đề thi có 1 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra định kỳ lần 1 Toán 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC, biết A(-2;1), B(4;0), C(2;3). a. Tìm tọa độ trung điểm I của AB và tọa độ trọng tâm G của tam giác ABC. b. Cho D(m;2). Tìm m để ba điểm A, B, D thẳng hàng. [ads] + Cho tam giác ABC. Gọi I là trung điểm của AB và E thuộc cạnh AC sao cho EC = 2EA. a. Chứng minh rằng EA – EB = BI – AI. b. Hãy xác định điểm M thỏa mãn: 5AC – 3BC + 12MA = 0. + Cho hàm số y = x^2 + 2x – 3 (1). a. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số (1). b. Tìm tọa độ giao điểm của đường thẳng d: y = x – 3 với đồ thị (P) của hàm số (1).
Đề kiểm tra học kỳ 1 Toán 10 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
Đề kiểm tra học kỳ 1 Toán 10 năm học 2019 – 2020 trường THPT Bình Tân – thành phố Hồ Chí Minh gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Cho hình chữ nhật ABCD có tâm O, AB = 3a, BC = 2a. a) Chứng minh: MA + MB + MC + MD = 4MO với điểm M tùy ý. b) Tính độ dài của AB + AD. + Trong mặt phẳng Oxy, cho hai điểm M(1;1), N(−3;3). Tìm điểm P thuộc trục hoành Ox để 3 điểm M, N, P thẳng hàng. + Cho A(6;3), B(3;6), C(1;2). Tìm tọa độ điểm H là chân đường cao kẻ từ B của tam giác ABC.