Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi huyện Toán 8 năm 2016 - 2017 phòng GDĐT Thạch Hà - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Thạch Hà – Hà Tĩnh; đề thi có đáp án, lời giải và thang điểm. Trích dẫn đề thi học sinh giỏi huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Giải vô địch bóng đá quốc gia Việt Nam 2016-2017 có 14 đội tham gia. Mỗi đội phải thi đấu cới các đội còn lại 1 trận ở sân nhà và một trận ở sân khách. Kết thúc mùa giải có tất cả bao nhiêu trận đấu? + Trong 1 hộp có 60 viên bi màu, gồm 25 bi màu đỏ, 20 bi màu xanh, và 15 bi màu vàng. Cần lấy ra ít nhất là bao nhiêu viên bi (mà không cần nhìn vào hộp) để có 3 viên bi khác màu? + Cho một lưới ô vuông có kích thước 5×5 ô. Người ta điền vào mỗi ô của lưới một trong các số -1; 0; 1. Xét tổng của các số theo từng cột, theo từng hàng và theo từng hàng chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Kỳ Anh Hà Tĩnh
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Kỳ Anh Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm học 2022-2023 Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm học 2022-2023 Chào quý thầy cô và các em học sinh lớp 8! Hôm nay Sytu xin giới thiệu đến các bạn đề thi học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 do Phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh tổ chức. Trong đề thi đó, các bạn sẽ được thử sức với những bài toán đa dạng và thú vị như sau: + Cho đa thức f(x) và biết khi chia đa thức f(x) cho các đa thức (x - 2) và (x - 3) thì được dư lần lượt là 5 và 7. Nếu chia đa thức f(x) cho đa thức (2x^2 + 5x + 6) thì được thương là 2x + 1. Hãy tìm đa thức f(x) đó. + Dãy số được cho theo quy luật như sau: 5, 7, 11, 19, ... Hãy viết biểu thức biểu diễn số hạng thứ n của dãy số trên. + Xã A tổ chức giải giao hữu bóng đá theo hình thức thi đấu vòng tròn một lượt. Biết rằng số trận thắng gấp ba lần số trận hòa và tổng số điểm của các đội là 330 điểm. Hỏi có tất cả bao nhiêu đội tham gia giải đấu? + Mảnh vườn hình thang có độ dài hai đáy lần lượt là 5m và 15m, độ dài hai đường chéo lần lượt là 16m và 12m. Hãy tính diện tích của mảnh vườn đó. + Cho tam giác ABC có trung tuyến AM và đường thẳng bất kỳ đi qua trọng tâm G cắt các cạnh AB và AC thứ tự tại E và F. Hãy tính giá trị của biểu thức AB/AC * AE/AF. Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm học 2022-2023 rất hấp dẫn và đòi hỏi sự tư duy logic, khả năng giải quyết vấn đề của các em. Chúc các bạn ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề Olympic 27 tháng 04 lớp 8 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề Olympic 27 tháng 04 lớp 8 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF - Nội dung bài viết Đề Olympic 27 tháng 04 lớp 8 môn Toán năm 2022-2023 sở GD ĐT Bà Rịa Vũng Tàu Đề Olympic 27 tháng 04 lớp 8 môn Toán năm 2022-2023 sở GD ĐT Bà Rịa Vũng Tàu Chào mừng đến với Đề thi Olympic 27 tháng 04 môn Toán lớp 8 năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu! Đề thi sẽ được tổ chức vào ngày 23 tháng 03 năm 2023, và sẽ đi kèm đáp án và hướng dẫn chấm điểm. Trong đề thi này, có nhiều câu hỏi thú vị và đầy thách thức. Ví dụ như trong câu hỏi về tam giác ABC vuông tại A, bạn sẽ cần chứng minh những tính chất về tia phân giác, tam giác cân và các góc nhọn. Câu hỏi khác đưa ra một bài toán về điều kiện của đường thẳng để tìm giá trị lớn nhất của một phân số. Không chỉ thế, có cả bài toán đòi hỏi bạn tìm tất cả các số nguyên dương thỏa mãn một điều kiện chia hết và tìm ra các số hữu tỉ thỏa mãn một phương trình phức tạp. Với những bài toán đa dạng và thú vị như vậy, chắc chắn rằng bạn sẽ phải đầu tư thời gian và tư duy đề giải những câu hỏi này. Chúc các em học sinh lớp 8 thành công và giải bài tập tốt nhé!
Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lang Chánh Thanh Hóa
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lang Chánh Thanh Hóa Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Lang Chánh Thanh Hóa Đề giao lưu HSG lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Lang Chánh Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 8! Trong kỳ học 2022-2023, phòng Giáo dục và Đào tạo huyện Lang Chánh, tỉnh Thanh Hóa sẽ tổ chức đề giao lưu học sinh giỏi môn Toán lớp 8. Kỳ thi sẽ diễn ra vào ngày 01 tháng 04 năm 2023, với đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề thi: Giải phương trình: $2x^2 y - xy^3 = 12$. Cho $x, y$ là các số nguyên thỏa mãn đẳng thức trên. Chứng minh rằng $2x^2 y$ chia hết cho 40. Cho đoạn thẳng $AB$. Kẻ tia $Bx$ vuông góc với $AB$ tại $B$. Trên tia $Bx$ lấy điểm $C$ ($C$ khác $B$). Chứng minh rằng: $HA \cdot HC = HB^2$. Kẻ $HD$ vuông góc với $BC$ ($D$ thuộc $BC$). Gọi $I$ là giao điểm của $AD$ và $BH$. Chứng minh rằng ba điểm $C, I, M$ thẳng hàng. Cho các số $a,b,c$ không âm thỏa mãn $abc=3$. Tìm giá trị nhỏ nhất của biểu thức $a^3+b^3+c^3$. Để biết thêm chi tiết và làm bài thi thử, bạn có thể tải file WORD tại đây: [link]. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Đông Hưng Thái Bình
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Đông Hưng Thái Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Đông Hưng Thái Bình Đề học sinh giỏi lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Đông Hưng Thái Bình Sytu xin chào đến với quý thầy cô và các em học sinh lớp 8. Trong đề khảo sát chọn nguồn học sinh giỏi môn Toán lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Đông Hưng, tỉnh Thái Bình. Dưới đây là một số câu hỏi trong đề: 1. Cho x, y, z thoả mãn: 2x^2 + 4y^2 + z^2 + 4xy + 4xz = 5. Tính giá trị của biểu thức: x^2023 + Q^10 - yz. 2. Tìm đa thức dư khi chia đa thức f(x) cho 2(x - 6), biết f(x) chia cho (x - 2) dư -12 và f(x) chia cho (x - 3) dư 28. 3. Cho hình vuông ABCD có cạnh bằng a, gọi O là giao điểm của hai đường chéo. Chứng minh rằng BI // CM và tính diện tích tứ giác BIOM theo a. Chứng minh rằng IM // BN và OM.MK = MB.MC. Chứng minh chu vi tam giác CME không đổi khi điểm I di chuyển trên cạnh AB và luôn có ∠IOM = 90.