Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề thể tích khối đa diện - Phạm Thu Hiền

Tài liệu gồm 30 trang hệ thống hóa lý thuyết thể tích khối đa diện và hướng dẫn giải một số bài toán thể tích khối đa diện điển hình. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh 12. Nội dung chuyên đề: Vấn đề 1 : Thể tích vật thể Thể tích vật thể K là phần mà vật thể đó chiếm chổ trong không gian Thể tích của vật thể K được kí hiệu V. V là một số lớn hơn 0 thỏa mãn các tính chất sau: 1. Hai khối đa diện bằng nhau thì thể tích bằng nhau 2. Thể tích khối lập phương bằng 1 thì V = 1 3. Nếu một khối đa diện được phân chia thành các khối đa diện thì thể tích khối ban đầu bằng tổng thể tích các khối đã phân chia Vấn đề 2 : Thể tích khối chóp Để tính thể tích khối chóp ta cần tính được chiều cao và diện tích đáy [ads] 1. Tính chiều cao Ta chính xác hóa chân đường cao + Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu bằng nhau, suy ra hình chóp có các cạnh bên bằng nha thì chân đường cao là tâm đường tròn ngoại tiếp đa giác đáy + Hai mặt phẳng vuông góc với nhau. Đường thẳng nào nằm trong mặt phẳng này mà vuông góc với giao tuyến thì vuông góc với mặt phẳng kia. Suy ra cách tìm hình chiếu H của A trên mp (P): • Tìm mặt phẳng pQq chứa A sao cho (Q) ⊥ (P) • Xác định giao tuyến d của (P) và (Q) • Trong (Q) dựng AH ⊥ d tại H + Hai mặt phẳng cắt nhau cùng vuông góc với một mặt phẳng thì giao tuyến của nó vuông góc với mặt phẳng đó + Hình chóp có các mặt bên tạo với đáy một góc bằng nhau thì chân đường cao trùng với tâm đường tròn nội tiếp đa giác đáy 2. Tính diện tích đáy: Sử dung các công thức tính diện tích tam giác, tứ giác … Vấn đề 3 : Thể tích khối lăng trụ 1. Công thức tính thể tích khối lăng trụ V = B.h, với B là diện tích đáy, h là chiều cao 2. Một số hình lăng trụ đặc biệt a. Hình lăng trụ đứng: Lăng trụ có cạnh bên vuông với đáy b. Hình lăng trụ đều : Lăng trụ đứng và đáy là đa giác đều c. Hình hộp : Lăng trụ và đáy là hình bình hành d. Hình hộp đứng: Lăng trụ đứng và đáy là hình bình hành Vấn đề 4 : Tỉ số thể tích

Nguồn: toanmath.com

Đọc Sách

350 câu hỏi trắc nghiệm chuyên đề hình học không gian - Nhóm Toán
Tài liệu 350 câu hỏi trắc nghiệm chuyên đề hình học không gian được hoàn thiện và chia sẻ bởi các thành viên trong groups nhóm Toán, gồm 62 trang được chia thành 7 đề, mỗi đề gồm 50 câu hỏi. Trích dẫn tài liệu : + Chọn khẳng định đúng: A. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì hai đường thẳng đó song song với nhau C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Tồn tại một hình đa diện có số đỉnh và số mặt bằng nhau B. Tồn tại một hình đa diện có số cạnh bằng số đỉnh C. Số đỉnh và số mặt của một hình đa diện luôn luôn bằng nhau D. Tồn tại một hình đa diện có số cạnh và số mặt bằng nhau + Cho khối tứ diện đều ABCD. Điểm M thuộc miền trong của khối tứ diện sao cho thể tích các khối MBCD, MCDA, MDAB, MABC bằng nhau. Khi đó: A. Tất cả các mệnh đề trên đều đúng B. M cách đều tất cả các mặt của khối tứ diện đó C. M là trung điểm của đôạn thẳng nối trung điểm của 2 cạch đối diện của tứ diện D. M cách đều tất cả các đỉnh của khối tứ diện đó
225 bài toán hình học không gian trong các đề thi thử 2016 - Trần Văn Tài
Tài liệu 225 bài toán hình học không gian trong các đề thi thử 2016 do thầy Trần Văn Tài biên soạn, các bài toán được giải chi tiết. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4a, cạnh SA vuông góc với mặt phẳng đáy. Góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, M là trung điểm của BC, N là điểm thuộc cạnh AD sao cho DN = a. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB và MN. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = a√3. Mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Biết đường thẳng SD tạo với mặt đáy một góc 45 độ. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SA và BD. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Đường thẳng SA vuông góc với mặt đáy. Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 độ. 1. Tính thể tích khối chóp S.ABC theo a. 2. Tính khoảng cách giữa hai đường thẳng AC và SB theo a.
Chuyên đề Thể tích - Góc - Khoảng cách trong không gian - Đỗ Bá Thành
Tài liệu gồm 36 trang trình bày các vấn đề về thể tích, góc và khoảng cách trong hình học không gian, tài liệu do tác giả Đỗ Bá Thành biên soạn. + Vấn đề 1: Thể tích khối chóp + Vấn đề 2: Thể tích khối lăng trụ + Vấn đề 3: Góc và các bài toán liên quan + Vấn đề 4: Khoảng cách [ads]
Các bài tập khối đa diện trong đề thi Đại học
Tài liệu gồm 15 trang tuyển tập và giải chi tiết các bài tập khối đa diện trong đề thi Đại học. + Bài 1. Tính thể tích của một khối đa diện + Bài 2. Sử dụng phương pháp thể tích để tìm khoảng cách + Bài 3. Các bài toán về thể tích khối đa diện có kết hợp với việc tìm giá trị lớn nhất và nhỏ nhất + Bài 4. Các bài toán về so sánh thể tích [ads]