Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 11 tháng 5 năm 2020 trường THPT Nguyễn Thị Giang - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 11 tháng 5 năm 2020 trường THPT Nguyễn Thị Giang – Vĩnh Phúc, đề thi có mã đề 132 gồm 05 trang với 40 câu trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 tháng 5 năm 2020 trường THPT Nguyễn Thị Giang – Vĩnh Phúc : + Tìm khẳng định đúng trong các khẳng định sau: A. Nếu hai mặt phẳng cùng song song với mặt phẳng thứ ba thì chúng song song với nhau. B. Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó phải đồng quy. C. Trong không gian, hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì hai đường thẳng đó song song với nhau. D. Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó trong mặt phẳng đó. [ads] + Sau đợt nghỉ dịch Covid-19, từ ngày 04 tháng 5 năm 2020, học sinh trường THPT Nguyễn Thị Giang, tỉnh Vĩnh Phúc đi học trở lại. Nhà trường yêu cầu tất cả học sinh đều phải đeo khẩu trang. Qua khảo sát, lớp 11A có 16 học sinh nữ và 24 học sinh nam, trong đó chỉ có một nửa số học sinh nữ và một nửa số học sinh nam đeo khẩu trang theo quy định. Nếu chọn ngẫu nhiên một học sinh của lớp 11A để kiểm tra, hãy tính xác suất để chọn được học sinh nữ hoặc học sinh đeo khẩu trang. + Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh bằng a, tam giác SAB đều. Gọi M là điểm trên cạnh AD sao cho AM = x với x thuộc (0;a). Mặt phẳng (alpha) qua M và song song với (SAB) lần lượt cắt các cạnh CB, CS, SD tại N, P, Q. Khi diện tích tứ giác MNPQ bằng 2x^2√3/9 thì x bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi chuyên đề Toán 11 lần 2 năm 2019 - 2020 trường Ngô Gia Tự - Vĩnh Phúc
Ngày … tháng 01 năm 2019, trường THPT Ngô Gia Tự – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán 11 lần thứ hai năm học 2019 – 2020. Đề thi chuyên đề Toán 11 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc gồm có 02 trang với 12 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài 120 phút, đề thi có đáp án. Trích dẫn đề thi chuyên đề Toán 11 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi d là giao tuyến của hai mặt phẳng (SAB) và (SCD). Khi đó khẳng định nào sau đây là đúng? A. Đường thẳng d đi qua S và song song với AB và CD. B. Đường thẳng d đi qua S và song song với AD và BC. C. Đường thẳng d trùng với đường thẳng SO. D. Đường thẳng d nằm trong mặt phẳng ABCD. + Mệnh đề nào sau đây sai? A. Hàm số y = cos x có tập xác định là R. B. Hàm số y = tan x là hàm số lẻ. C. Hàm số y = sin x tuần hoàn với chu kỳ T = 2pi. D. Hàm số y = cot x là hàm số chẵn. [ads] + Cho hình chóp S.ABCD có đáy là hình bình hành ABCD tâm O. Gọi M, N, P lần lượt là trung điểm các cạnh SA, SD, BC. a) Tìm giao điểm của đường thẳng MC với mặt phẳng (SBD). b) Tìm giao tuyến d của hai mặt phẳng (MNO) và (SCD). Chứng minh d song song với mặt phẳng (SBC). + Các mặt của một con xúc sắc được đánh số từ 1 đến 6. Người ta gieo con xúc sắc 3 lần liên tiếp và nhân các con số nhận được trong mỗi lần gieo với nhau. Tính xác suất để tích thu được là một số chia hết cho 6. + Biết tổng của ba hệ số của ba số hạng thứ nhất, thứ hai, thứ ba trong khai triển (x^3 + 1/x^2)^n bằng 11. Tìm hệ số của số hạng chứa x2.
Đề khảo sát lần 2 Toán 11 năm 2019 - 2020 trường Nguyễn Đăng Đạo - Bắc Ninh
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 đề khảo sát lần 2 Toán 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh, đề có mã đề 178 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra chất lượng Toán 11 thường xuyên trong giai đoạn đầu học kỳ 2 năm học 2019 – 2020. Trích dẫn đề khảo sát lần 2 Toán 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Mệnh đề nào sau đây là đúng? A. Qua điểm A và đường thẳng d xác định duy nhất một mặt phẳng. B. Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất. C. Qua ba điểm phân biệt xác định duy nhất một mặt phẳng. D. Nếu trên đường thẳng d có hai điểm phân biệt thuộc mp(α) thì mọi điểm trên d đều thuộc mp(α). + Trong các mệnh đề sau, mệnh đề nào Sai? A. Phép tịnh tiến biến một đường thẳng thành một đường thẳng song song với nó. B. Phép tịnh tiến biến một tam giác thành một tam giác đồng dạng với nó. C. Phép tịnh tiến biến một đoạn thẳng thành một đoạn thẳng bằng nó. D. Phép tịnh tiến biến một đường tròn thành một đường tròn có cùng chu vi với nó. [ads] + Từ các chữ số 0, 1, 2, 3, 4 lập các số tự nhiên có 4 chữ số khác nhau. Tính xác suất để số lập được có đúng 2 chữ số chẵn và 2 chữ số lẻ, đồng thời 2 chữ số đứng cạnh nhau thì không cùng tính chẵn, lẻ. + Cho tứ diện đều ABCD cạnh bằng 1. Gọi E là trung điểm BD; M là điểm thuộc cạnh BC sao cho BM = x (0 < x < 1). Mặt phẳng (α) qua M, song song với 2 đường thẳng AB và CE. (α) cắt các đoạn BD, AE, AC lần lượt tại N, P, Q. Tìm giá trị nhỏ nhất của biểu thức T = MP^2 + NQ^2. + Cho hình vuông ABCD cạnh a tâm O tập hợp điểm M sao cho MA.MC + MB.MD = a^2 là: A. Đường tròn tâm O, bán kính R = a. B. Đường tròn tâm O, bán kính R = a/√2. C. Đường tròn tâm O, bán kính R = a√2. D. Đường tròn tâm O, bán kính R = 2a.
Đề khảo sát tháng 122019 môn Toán 11 trường THPT Trần Phú - Vĩnh Phúc
Đề thi KSCL Toán 11 lần 2 năm 2019 - 2020 trường THPT Tiên Du 1 - Bắc Ninh
Ngày … tháng 12 năm 2019, trường THPT Tiên Du số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán 11 lần thứ 2 giai đoạn đầu học kỳ 2 năm học 2019 – 2020. Đề thi KSCL Toán 11 lần 2 năm 2019 – 2020 trường THPT Tiên Du 1 – Bắc Ninh mã đề 201 gồm có 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, kỳ thi nhằm mục đích giúp học sinh rèn luyện thường xuyên để nâng cao kiến thức và kỹ năng giải Toán 11, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 11 lần 2 năm 2019 – 2020 trường THPT Tiên Du 1 – Bắc Ninh : + Trong khai triển nhị thức (2x – y)^8. Khẳng định nào sau đây là đúng? A. có số mũ của x và số mũ của y ở mỗi hạng tử luôn bằng nhau. B. có tổng số mũ của x và y trong mỗi hạng tử đều bằng 8. C. có hệ số mỗi hạng tử là như nhau. D. có 8 hạng tử. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là: A. đường thẳng đi qua S. B. đường thẳng đi qua S và giao điểm của AC và BD. C. đường thẳng đi qua S song song với AB, CD. D. đường thẳng đi qua S và song song với AD và BC. [ads] + Gọi X là tập hợp tất cả các số tự nhiên có 8 chữ số được lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Lấy ngẫu nhiên một số trong tập tập hợp X. Gọi A là biến cố lấy được số có đúng hai chữ số 1, có đúng hai chữ số 2, bốn chữ số còn lại đôi một khác nhau, đồng thời các chữ số giống nhau không đứng liền kề nhau. Xác suất của biến cố A bằng? + Một người đi làm với mức lương khởi điểm 4 triệu đồng/1 tháng. Cứ sau 3 năm thì tăng lương 1 lần với mức tăng 15% của tháng lương trước đó. Hỏi năm đi làm thứ 20 thì mức lương của người đó mỗi tháng nhận được xấp xỉ gần nhất với con số nào sau đây? + Cho tứ diện ABCD và M, N lần lượt là các điểm trên hai cạnh AB, CD sao cho AM/MB + CN/ND = k > 0 và (α) là mặt phẳng qua MN và song song với cạnh BC, gọi P là giao điểm của (α) với cạnh AC. Tìm k biết tỷ số diện tích tam giác MNP và diện tích thiết diện của tứ diện được cắt bởi mặt phẳng (α) bằng 1/3.