Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề điểm nằm giữa hai điểm, tia

Nội dung Tài liệu dạy thêm học thêm chuyên đề điểm nằm giữa hai điểm, tia Bản PDF Tài liệu dạy thêm và học thêm chuyên đề điểm nằm giữa hai điểm, tia là một tài liệu hữu ích giúp giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu bao gồm 14 trang với hai phần chính: Tóm tắt lí thuyết và Các dạng bài.

Phần I: Tóm tắt lí thuyết cung cấp những kiến thức cần biết về chủ đề điểm nằm giữa hai điểm, tia. Nó giúp học sinh nắm vững lý thuyết và các khái niệm cơ bản về điểm nằm giữa, điểm khác phía và điểm cùng phía.

Phần II: Các dạng bài liệt kê và hướng dẫn cách giải từng dạng bài một. Cụ thể, các dạng bài bao gồm:

1. Nhận biết điểm thuộc đường thẳng và đường thẳng đi qua điểm: Đề cập đến việc xác định những điểm thuộc đường thẳng và những điểm mà đường thẳng đi qua.

2. Vẽ điểm, vẽ đường thẳng theo một số điều kiện cho trước: Hướng dẫn vẽ đường thẳng và điểm theo các điều kiện đặt ra.

3. Nhận biết ba điểm thẳng hàng: Giải thích cách kiểm tra xem ba điểm có thẳng hàng hay không bằng cách xem xét xem ba điểm đó có cùng thuộc một đường thẳng hay không.

4. Đường thẳng đi qua hai điểm: Sử dụng tính chất "có một đường thẳng và chỉ một đường thẳng đi qua hai điểm" để giải quyết vấn đề.

5. Chứng minh nhiều điểm thẳng hàng: Hướng dẫn cách chứng minh một số điểm nằm trong hai đường thẳng và các đường thẳng này có hai điểm chung.

6. Vận dụng khái niệm điểm nằm giữa, điểm nằm khác phía, nằm cùng phía: Cung cấp ví dụ và giải thích cách áp dụng nhận xét "nếu điểm O nằm giữa hai điểm A và B, thì hai điểm A và B nằm khác phía với điểm O, hai điểm O và B nằm cùng phía với điểm A, hai điểm O và A nằm cùng phía với điểm B".

7. Nhận biết điểm nằm giữa hai điểm khác: Sử dụng nhận xét rằng nếu hai tia OA, OB đối nhau thì điểm O nằm giữa hai điểm A và B.

Tài liệu được biên soạn dưới dạng file Word, thuận tiện cho giáo viên và cô giáo. Nó giúp học sinh nắm vững kiến thức và cung cấp các bài tập để thực hành khả năng giải các dạng bài về điểm nằm giữa hai điểm, tia.

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề cách ghi số tự nhiên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề cách ghi số tự nhiên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT – Trong hệ thập phân, mọi số tự nhiên đều ghi được viết dưới dạng một dãy số lấy trong 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, vị trí của các chữ số trong dãy gọi là hàng. – Cứ 10 đơn vị ở một hàng thì bằng 1 đơn vị của hàng liền trước nó. – Ngoài cách ghi trong hệ thập phân còn cách ghi bằng số La Mã. + Để viết các số La Mã không quá 30 ta dùng ba kí tự sau I V X. Ba chữ số ấy cùng với hai cụm chữ số là IV IX là năm thành phần dùng để ghi số La Mã. Giá trị của mỗi thành phần được ghi trong bảng sau và không thay đổi dù nó đứng ở bất kỳ vị trí nào. Thành phần I V X IV IX Giá trị (viết trong hệ thập phân) 1 5 10 4 9. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm về tập hợp. Một tập hợp gọi tắt là tập bao gồm những đối tượng nhất định. Các đối tượng ấy gọi là các phần tử của tập hợp. 2. Các kí hiệu. – Tập hợp kí hiệu bằng chữ in hoa: A , B , C. – Nếu x là một phần tử của tập hợp A thì ta kí hiệu là: x A. – Nếu y là một phần tử không thuộc tập B thì ta kí hiệu là: y B. 3. Hai cách để mô tả một tập hợp. a) Cách 1. Liệt kê tất cả các phần tử của tập hợp. Viết các phần tử vào trong dấu theo một thứ tự tùy ý nhưng mỗi phần tử chỉ viết 1 lần. VD1: Tập hợp A các số tự nhiên nhỏ hơn 4 là VD2: Tập hợp B các chữ cái trong từ TAP HOP là: B T A P H O. b) Cách 2. Chỉ ra tính chất đặc trưng của các phần tử trong tập. VD3: Tập hợp C các số tự nhiên x nhỏ hơn 6 là C x x là một trong các số tự nhiên đầu tiên. 4. Chú ý. Tập hợp không chứa phần tử nào gọi là tập hợp rỗng và kí hiệu là rỗng. VD: Tập hợp những số tự nhiên bé hơn 0 là tập hợp rỗng. 5. Tập hợp con – Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B. – Kí hiệu: A B hay B A, đọc là: A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A. – Chú ý: Tập rỗng là tập hợp con của mọi tập hợp. Tập hợp A là con của chính tập hợp A. – Ví dụ: Cho ba tập hợp: A M N Tập hợp M là tập hợp con của tập hợp A vì các phần tử của tập hợp M đều thuộc tập hợp A. Tập hợp N không là tập hợp con của tập hợp A vì phần tử 1 của tập hợp N không thuộc tập hợp A. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Chuyên đề tam giác
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Nắm được định nghĩa tam giác. + Hiểu được khái niệm đỉnh, góc, cạnh của tam giác. Kĩ năng: + Biết vẽ tam giác, biết gọi tên các đỉnh, các cạnh, các góc của tam giác. + Nhận biết được điểm nằm bên trong và bên ngoài tam giác. I. LÍ THUYẾT TRỌNG TÂM Tam giác ABC: + Tam giác ABC là hình gồm ba đoạn thẳng AB, BC, CA với ba điểm A, B, C không thẳng hàng. + Tam giác ABC được kí hiệu là ABC hoặc ACB BCA BAC CAB CBA. + Ba điểm A, B, C được gọi là ba đỉnh của tam giác. + Ba đoạn thẳng AB, BC, CA được gọi là ba cạnh của tam giác. + Ba góc CAB ABC BCA được gọi là ba góc của tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết tam giác và các yếu tố của tam giác. Dạng 2 : Vẽ hình. Ta xét hai bài toán cơ bản: Bài toán 1. Vẽ tam giác ABC khi biết độ dài 3 cạnh. + Bước 1. Dựng đoạn BC. + Bước 2. Vẽ cung tròn tâm B bán kính BA. + Bước 3. Vẽ cung tròn tâm C bán kính CA. + Bước 4. Hai cung tròn cắt nhau tại điêm A. Vẽ điểm A. + Bước 5. Nối AB, BC, AC ta được tam giác ABC. Bài toán 2. Vẽ tam giác ABC khi biết số đo góc A và độ dài hai cạnh AB, AC. + Bước 1. Vẽ góc A. + Bước 2. Dựng hai đoạn AB, AC. + Bước 3. Nối BC được tam giác ABC.
Chuyên đề đường tròn
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Nắm vững khái niệm đường tròn, hình tròn. + Nhận biết được dây cung, đường kính, bán kính của đường tròn. + Nhận biết được vị trí của một điểm so với đường tròn. Kĩ năng: + Sử dụng thành thạo compa trong việc vẽ đường tròn, hình tròn. I. LÍ THUYẾT TRỌNG TÂM Đường tròn: Đường tròn tâm O, bán kính R là hình gồm các điểm cách O một khoảng bằng R, kí hiệu (O:R). Hình tròn: Hình tròn là hình gồm các điểm nằm trên đường tròn và các điểm nằm bên trong đường tròn đó. Mọi điểm thuộc đường tròn thì thuộc hình tròn đó. Cung và dây cung: Giả sử A, B là hai điểm nằm trên đường tròn tâm O. Hai điểm này chia đường tròn thành hai phần, mỗi phần gọi là một cung tròn (gọi tắt là cung). Khi đó hai điểm A và B được gọi là hai mút của cung. Đoạn thẳng nối hai mút của cung là dây cung. Dây đi qua tâm là đường kính. Đường kính dài gấp đôi bán kính. II. CÁC DẠNG BÀI TẬP Dạng 1 . Nhận biết vị trí của một điểm với đường tròn. Cho đường tròn tâm O bán kính R. + Điểm M nằm trong đường tròn (O;R) khi và chỉ khi OM < R. + Điểm N nằm trong đường tròn (O;R) khi và chỉ khi ON = R. + Điểm P nằm trong đường tròn (O;R) khi và chỉ khi OP > R. Dạng 2 . Vẽ hình. Dạng 3 . Tính độ dài đoạn thẳng.