Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Hải Phòng

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo Hải Phòng tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn Hải Phòng. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Hải Phòng, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Hải Phòng : + Cho một thửa ruộng hình chữ nhật, biết rằng nếu chiều rộng tăng thêm 2m, chiều dài giảm đi 2m thì diện tích thửa ruộng đó tăng thêm 30m2 và nếu chiều rộng giảm đi 2m, chiều dài tăng thêm 5m thì diện tích thửa ruộng giảm đi 20m2. Tính diện tích thửa ruộng trên. [ads] + Một hình trụ có diện tích xung quanh 140π (cm2) và chiều cao là h = 7 cm. Tính thể tích của hình trụ đó. + Tìm các giá trị của tham số m để đồ thị hai hàm số y = (m + 4)x + 11 và y = x + m^2 + 2 cắt nhau tại một điểm trên trục tung.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT An Giang
Nội dung Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán 2021 - 2022 sở GDĐT An Giang Đề thi tuyển sinh THPT môn Toán 2021 - 2022 sở GDĐT An Giang Xin chào quý thầy cô và các em học sinh! Dưới đây là đề thi tuyển sinh lớp 10 THPT môn Toán năm học 2021 - 2022 từ sở GD&ĐT An Giang. Đề tuyển sinh bao gồm các câu hỏi sau: Cho hai hàm số \(y = x^2\) có đồ thị là parabol (P) và \(y = x + 2\) có đồ thị là đường thẳng (d). a. Vẽ đồ thị (P) và (d) trên cùng một hệ trục tọa độ. b. Bằng phép tính, tìm tọa độ giao điểm của (P) và (d). Cho bốn điểm \(A\), \(B\), \(C\), \(D\) theo thứ tự lần lượt nằm trên nửa đường tròn đường kính \(AD\). Gọi \(E\) là giao điểm của \(AC\) và \(BD\). a. Chứng minh tứ giác \(ABEF\) nội tiếp. b. Chứng minh \(BD\) là tia phân giác của góc \(CBF\). Một bức tường được xây bằng các viên gạch hình chữ nhật bằng nhau và được bố trí như hình vẽ bên. Phần sơn màu (tô đậm) là phần ngoài của một hình tam giác có cạnh đáy 10 dm và chiều cao 6 dm. Tính diện tích phần tô đậm. Hy vọng đề thi sẽ giúp các em học sinh tự tin và thành công trong kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh có một kì thi thành công!
Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT tỉnh Quảng Ninh
Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT tỉnh Quảng Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021-2022 sở GD ĐT tỉnh Quảng Ninh Đề tuyển sinh môn Toán năm 2021-2022 sở GD ĐT tỉnh Quảng Ninh Vào sáng thứ Tư, ngày 02 tháng 06 năm 2021, Sở Giáo dục và Đào tạo tỉnh Quảng Ninh đã tổ chức kỳ thi tuyển sinh vào lớp 10 hệ THPT môn Toán cho năm học 2021-2022. Đề tuyển sinh này dành cho mọi thí sinh và gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021-2022 sở GD&ĐT tỉnh Quảng Ninh: + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Lớp 9B có 42 học sinh. Vừa qua lớp đã phát động phong trào tặng sách cho các bạn đang cách ly vì dịch bệnh Covid-19. Tại buổi phát động, mỗi học sinh trong lớp đều tặng 3 quyển sách hoặc 5 quyển sách. Kết quả cả lớp đã tặng được 146 quyển sách. Hỏi lớp 9B có bao nhiêu bạn tặng 3 quyển sách và bao nhiêu bạn tặng 5 quyển sách? + Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (O) (A là tiếp điểm). Qua A kẻ đường thẳng song song với MO, đường thẳng này cắt đường tròn (O) tại C (C khác A). Đường thẳng MC cắt đường tròn (O) tại điểm B (B khác C). Gọi H là hình chiếu của O trên BC. a. Chứng minh tứ giác MAHO nội tiếp. b. Chứng minh AB/AC = MA/MC. c. Chứng minh BAH = 90°. d. Vẽ đường kính AD của đường tròn (O). Chứng minh hai tam giác ACH và DMO đồng dạng. + Cho các số thực không âm a và b. Tìm giá trị nhỏ nhất của biểu thức P.
Đề Toán thi vào 10 chuyên năm 2021 trường ĐHKH Huế (vòng 2 chuyên Tin)
Nội dung Đề Toán thi vào 10 chuyên năm 2021 trường ĐHKH Huế (vòng 2 chuyên Tin) Bản PDF - Nội dung bài viết Đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 - chuyên Tin) Đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 - chuyên Tin) Ngày 31 tháng 5 năm 2021, Hội đồng tuyển sinh lớp 10 trường Đại học Khoa học – Đại học Huế tổ chức kỳ thi tuyển sinh lớp 10 THPT chuyên năm 2021 môn Toán vòng 2 – chuyên Tin. Đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 – chuyên Tin) gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 – chuyên Tin): + Để tính nhẩm bình phương của một số nguyên tận cùng bằng 5, bạn B thiết lập công thức sau: (a5) = (10a + 5)2 = 100a2 + 100a + 25 = 100a(a + 1) + 25. Hãy áp dụng công thức trên để tính 35^2, 95^2. Không dùng máy tính, cho biết 42025 là bình phương của số nguyên dương nào? Hãy giải thích. + Cho đường tròn (O) có dây cung BC cố định không đi qua tâm O. Điểm A di động trên (O) sao cho tam giác ABC có 3 góc nhọn. Các đường cao BE, CF của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC, đoạn thẳng KA cắt (O) tại điểm M. Chứng minh rằng: a. BCEF là tứ giác nội tiếp. b. KM.KA = KE.KF. c. Đường thẳng MH luôn đi qua một điểm cố định khi A thay đổi. + Trong một khu phố người ta làm các đường dưới dạng bàn cờ: Một bạn xuất phát từ vị trí A muốn đi đến vị trí B. Hỏi bạn đó có thể chọn được bao nhiêu cách đi khác nhau? Biết rằng, bạn này chỉ chọn đường đi ngắn nhất và chỉ đi trên các đường người ta đã làm.
Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Lào Cai
Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Lào Cai Đề tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Lào Cai Ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Lào Cai đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2021 - 2022. Đề tuyển sinh môn Toán cho lớp 10 năm 2021 - 2022 của sở GD&ĐT Lào Cai bao gồm 01 trang đề thi với 07 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Cụ thể, trong đề tuyển sinh môn Toán năm 2021 - 2022 của sở GD&ĐT Lào Cai, có những bài toán như sau: Cho hàm số y = x^2 + b. Hãy tìm giá trị của b sao cho đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. Cho Parabol y = x^2 và đường thẳng d: y = mx + m/4 (với m là tham số). Tìm điều kiện của tham số m để đường thẳng d cắt Parabol tại hai điểm nằm về hai phía của trục tung. Hai bạn An và Bình cùng may khẩu trang để ủng hộ địa phương đang có dịch bệnh Covid-19. Mất hai ngày để hoàn thành công việc khi cả hai làm cùng nhau. Nếu chỉ có An làm việc trong 4 ngày rồi nghỉ và Bình tiếp tục làm trong 1 ngày nữa thì công việc cũng được hoàn thành. Hỏi mỗi người làm riêng một mình thì sau bao lâu sẽ hoàn thành công việc? Đề tuyển sinh này không chỉ giúp học sinh thử sức mình trong môn Toán mà còn giúp họ rèn luyện kỹ năng tư duy logic, xử lý vấn đề và giải quyết bài toán. Đây là cơ hội tốt để các em chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!