Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Phan Ngọc Hiển - Cà Mau

Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Phan Ngọc Hiển – Cà Mau gồm 30 câu hỏi trắc nghiệm và 2 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AD và BC. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là: A. SO, O là tâm hình bình hành ABCD. B. SD C. SG, G là trung điểm AB. D. SF, F là trung điểm CD. + Đề kiểm tra hoc kì 1 môn Toán khối 11 ở một Trường THPT gồm 2 phần tự luận và trắc nghiệm, trong đó phần tự luận có 13 đề, phần trắc nghiệm có 10 đề. Mỗi học sinh phải làm bài thi gồm một đề tự luận và một đề trắc nghiệm. Hỏi Trường THPT đó có bao nhiêu cách chọn đề thi? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo AC và BD của hình bình hành ABCD. a) Xác định giao tuyến của hai mặt phẳng (SBD) và (SAC). b) Gọi K là trung điểm của SD. Tìm giao điểm G của BK với mặt phẳng (SAC); hãy cho biết tính chất của điểm G.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Ngày … tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kì thi kiểm tra học kì 1 môn Toán lớp 11 (khối THPT và khối GDTX) năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở GD&ĐT Bà Rịa – Vũng Tàu mã đề 01 gồm có 03 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, trong đó: phần trắc nghiệm gồm có 20 câu, chiếm 4,0 điểm, học sinh làm bài trong 35 phút; phần tự luận gồm có 4 câu, chiếm 6,0 điểm, học sinh làm bài trong 55 phút; đề thi có đáp án và lời giải chi tiết các mã đề: 01, 02, 03, 04. Trích dẫn đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm là O. Gọi M là trung điểm của SC. a) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD). b) Chứng minh đường thẳng OM song song với mặt phẳng (SAD). c) Gọi N là trung điểm của BO; là giao điểm của (AMN) với SD. Tính tỷ số SI/SD. + Người ta trồng 5151 cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây … cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây được trồng là? [ads] + Cho tứ diện ABCD. Gọi I, J và K lần lượt là trung điểm của AC, BC và BD. Giao tuyến của hai mặt phẳng (ABD) và (UK) là đường thẳng A. IK. B.JK. C. qua K và song song với AB. D. qua K và song song với AD. + Gọi (C) là đường tròn ngoại tiếp hình vuông ABCD cạnh a; (C’) là ảnh của (C) qua phép vị tự tâm A tỉ số k = -2. Đường tròn (C’) có bán kính R’ bằng? + Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh từ 20 đỉnh trên. Tính xác suất để 3 đỉnh đó là 3 đỉnh của 1 tam giác vuông không cân.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Nội Bản PDF Ngày … tháng 12 năm 2019, trường THPT Trần Phú, quận Hoàn Kiếm, thành phố Hà Nội tổ chức kì thi kiểm tra chất lượng học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Trần Phú – Hà Nội mã đề 628 gồm có 03 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm có 25 câu, chiếm 5 điểm, phần tự luận gồm có 5 câu, chiếm 5 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Trần Phú – Hà Nội : + Xác suất bắn trúng mục tiêu của một vận động viên khi bắn một viên đạn là 0,6. Người đó bắn hai viên đạn một cách độc lập. Xác suất để có đúng một viên trúng mục tiêu và một viên trượt mục tiêu là? + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật. Trên các cạnh BC, CD, SC lần lượt lấy các điểm M, N, P sao cho CM = 3MB, CN = 3/4.CD, SC = 4SP. a) Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD). b) Chứng minh SD song song với mặt phẳng (MNP). + Từ một hộp chứa tám viên bi xanh và bốn viên bi đỏ, lấy ngẫu nhiên đồng thời ba viên bi. Tính xác suất sao cho có ít nhất hai viên bi đỏ?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên Tiền Giang
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên Tiền Giang Bản PDF Thứ Ba ngày 20 tháng 12 năm 2019, trường THPT chuyên Tiền Giang tổ chức kiểm tra học kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi học kỳ 1 Toán lớp 11 năm 2019 – 2020 trường THPT chuyên Tiền Giang (đề dành cho các lớp 11 không chuyên Toán) có mã đề 135, đề gồm 04 trang 32 câu trắc nghiệm (chiếm 8,0 điểm) và 01 bài toán tự luận (chiếm 2,0 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 11 năm 2019 – 2020 trường THPT chuyên Tiền Giang : + Cho tứ diện ABCD. Gọi O là một điểm bên trong tam giác BCD và M là một điểm trên đoạn AO (M khác A và O). Gọi I, J là hai điểm trên cạnh BC, BD. Giả sử IJ cắt CD tại K, BO cắt IJ tại E và cắt CD tại H, ME cắt AH tại F. Giao tuyến của hai mặt phẳng (MIJ) và (ACD) là đường thẳng nào sau đây? + Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD) là? A. Đường thẳng qua S và song song với AD. B. Đường thẳng qua S và song song với CD. C. Đường SO với O là tâm hình bình hành. D. Đường thẳng qua S và cắt AB. [ads] + Kết quả (b;c) của việc gieo một con súc sắc cân đối, đồng chất 2 lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện lần gieo thứ hai được thay vào phương trình bậc hai x^2 + bx + 2c = 0. Tính xác suất để phương trình bậc hai đó vô nghiệm. + Một người vào một nhà hàng ẩm thực, người đó chọn một thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một loại nước uống trong 3 loại nước uống. Hỏi người đó có bao nhiêu cách chọn một thực đơn? + Gọi S là tập hợp tất cả các giá trị của m để phương trình x^4 – 2(m + 1)x^2 + 2m + 1 = 0 có bốn nghiệm phân biệt lập thành cấp số cộng. Tính tổng các phần tử của S. File WORD (dành cho quý thầy, cô):
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GDKHCN Bạc Liêu
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GDKHCN Bạc Liêu Bản PDF Sáng thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở GDKHCN Bạc Liêu mã đề 124, đề thi gồm có 03 trang với 20 câu trắc nghiệm (chiếm 6,0 điểm) và 03 câu tự luận (chiếm 4,0 điểm), học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở GDKHCN Bạc Liêu : + Trong một cuộc thi, Ban tổ chức dùng 7 cuốn sách môn Toán, 6 cuốn sách môn Vật lý và 5 cuốn sách môn Hóa học để làm phần thưởng cho 9 học sinh có kết quả cao nhất. Các cuốn sách cùng thể loại Toán, Vật lý, Hóa học đều giống nhau. Mỗi thí sinh nhận thưởng sẽ được hai cuôn sách khác thể loại, trong đó có An. Tính xác suất để An nhận thưởng có sách Toán. + Từ 20 học sinh ưu tú gồm 10 nam và 10 nữ, người ta muốn thành lập một đoàn đại biểu gồm 6 người để tham dự một buổi hội thảo, trong đó có 1 trưởng đoàn là nam và 2 phó đoàn là nữ. Hỏi có bao nhiêu cách thành lập một đoàn đại biểu như vậy? [ads] + Một.cơ sở khoan giếng đưa ra định mức giá như sau: Giá cùa mét khoan đầu tiên là 10000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 3000 đồng so với giá của mét khoan ngay trước đó. Một người muốn ký họp đồng với cơ sở khoan giếng này để khoan một giếng sâu 100 mét lấy nước dùng cho sinh hoạt của gia đình. Hỏi sau khi hoàn thành việc khoan giêng, gia đình đó phải thanh toán cho cợ sở khoan giêng sô tiên băng bao nhiêu? + Cho hình chóp S.ABCD có đáy ABCD là hình thang, với đáy lớn là AD và AD = 2BC. Tìm giao điểm của đường thẳng CD và mặt phẳng (SAB). Gọi I là điểm nằm trên cạnh SC sao cho 2SC = 3SI. Chứng minh đường thẳng SA song song với mặt phẳng (BID). + Từ một hộp chứa 7 quả cầu màu đỏ và 5 quả cầu màu vàng, Hùng lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để Hùng lấy được 3 quả cầu trong đó có hai quả cầu màu đỏ.