Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đa thức một biến Toán 7

Tài liệu gồm 30 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đa thức một biến trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. + Đa thức một biến (gọi tắt là đa thức) là tổng của những đơn thức của cùng một biến; mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó. + Số 0 cũng được gọi là một đa thức, gọi là đa thức không. + Kí hiệu: Ta thường kí hiệu đa thức bằng một chữ cái in hoa. Đôi khi còn viết thêm kí hiệu biến trong ngoặc đơn. PHẦN II . CÁC DẠNG BÀI. Dạng 1 : Thu gọn và sắp xếp đa thức một biến. + Thu gọn đa thức một biến: Thực hiện phép tính cộng các đơn thức cùng bậc. + Sắp xếp đa thức một biến (đa thức khác 0): Viết đa thức dưới dạng thu gọn và sắp xếp các hạng tử của nó theo lũy thừa giảm của biến. Dạng 2 : Tìm bậc và các hệ số của một đa thức. Trong một đa thức thu gọn và khác đa thức không: + Bậc của hạng tử có bậc cao nhất gọi là bậc của đa thức đó. + Hệ số của hạng tử có bậc cao nhất gọi là hệ số cao nhất của đa thức đó. + Hệ số của hạng tử có bậc 0 gọi là hệ số tự do của đa thức đó. Chú ý: + Đa thức không thì không có bậc. + Trong một đa thức thu gọn, hệ số cao nhất phải khác 0 (các hệ số khác có thể bằng 0). + Muốn tìm bậc của một đa thức chưa thu gọn, ta phải thu gọn đa thức đó. Dạng 3 : Tính giá trị của đa thức. Để tính giá trị của đa thức ta thực hiện theo các bước: + Bước 1: Thu gọn, sắp xếp đa thức theo lũy thừa giảm dần của biến. + Bước 2: Thay giá trị cụ thể của biến vào đa thức và thực hiện các phép tính. + Bước 3: Kết luận. Dạng 4 : Nghiệm của đa thức một biến. Nếu tại x a đa thức P x có giá trị bằng 0 thì ta nói a (hoặc x a) là một nghiệm của đa thức đó. + a là nghiệm của P x khi P a 0. + Một đa thức (khác đa thức không) có thể có một nghiệm, hai nghiệm … hoặc không có nghiệm. + Số nghiệm số của một đa thức không vượt quá bậc của nó. Để tìm nghiệm của đa thức P x ta cho P x 0 rồi tìm giá trị x thỏa mãn. Để chứng minh x a là nghiệm của của đa thức P x ta chỉ ra P a 0. Để chứng minh x a là không nghiệm của của đa thức P x ta chỉ ra P a 0. Gọi ẩn và lập biểu thức chứa biến biểu diễn mối quan hệ giữa đại lượng theo ẩn. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán
Nội dung Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Tài liệu này bao gồm 20 trang, tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT: Trình bày về khái niệm đường vuông góc và đường xiên, cách nhận biết chúng và tính khoảng cách từ một điểm đến một đường thẳng. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Nhận biết đường vuông góc, đường xiên và tính khoảng cách từ một điểm đến một đường thẳng. Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. Tính khoảng cách từ một điểm đến đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2: Đưa ra quan hệ giữa đường vuông góc và đường xiên, sử dụng định lý đường vuông góc ngắn hơn đường xiên. PHẦN III. BÀI TẬP TỰ LUYỆN: Bao gồm các bài tập để học sinh tự luyện tập và củng cố kiến thức về quan hệ giữa đường vuông góc và đường xiên. Tài liệu này sẽ giúp học sinh dễ dàng hiểu và áp dụng các kiến thức về đường vuông góc và đường xiên trong môn Toán lớp 7.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác lớp 7 môn Toán
Nội dung Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề về quan hệ giữa góc và cạnh đối diện trong tam giác lớp 7Tóm tắt lí thuyết:Các dạng bài tập:Dạng 1: So sánh góc trong tam giácDạng 2: So sánh cạnh trong tam giácBài tập tự luyện: Chuyên đề về quan hệ giữa góc và cạnh đối diện trong tam giác lớp 7 Để hiểu rõ hơn về mối quan hệ giữa góc và cạnh đối diện trong một tam giác, chúng ta cần nắm vững các điều cơ bản sau đây: Tóm tắt lí thuyết: - Định lí 1: So sánh các cạnh đối diện với các góc trong một tam giác. - Định lí 2: So sánh các góc đối diện với các cạnh trong tam giác. Các dạng bài tập: Dạng 1: So sánh góc trong tam giác - TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác, ta áp dụng định lí 1. - TH2: Nếu các góc cần so sánh khác tam giác, dùng góc trung gian để so sánh. Dạng 2: So sánh cạnh trong tam giác - TH1: Nếu cạnh cần so sánh nằm trong tam giác, ta áp dụng định lí 2. - TH2: Nếu cạnh cần so sánh khác tam giác, dùng góc trung gian để so sánh. Bài tập tự luyện: Để nắm vững kiến thức, hãy tự luyện tập các bài toán liên quan đến quan hệ giữa góc và cạnh đối diện trong tam giác. Hãy áp dụng các định lí và phương pháp đã học để giải quyết các bài tập một cách thành thạo.
Chuyên đề tam giác cân, đường trung trực của đoạn thẳng lớp 7 môn Toán
Nội dung Chuyên đề tam giác cân, đường trung trực của đoạn thẳng lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong Toán lớp 7Phần I: Tóm tắt lí thuyếtPhần II: Các dạng bàiPhần III: Bài tập tự luyện Chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong Toán lớp 7 Chuyên đề này bao gồm 26 trang tài liệu, được chia thành 3 phần chính để giúp học sinh hiểu rõ về tam giác cân và đường trung trực của đoạn thẳng. Phần I: Tóm tắt lí thuyết Phần này tóm tắt những kiến thức cơ bản về tam giác cân, tam giác đều và tính chất của đường trung trực. Học sinh sẽ được hướng dẫn cách nhận biết tam giác cân, tam giác đều, tính chất của chúng và cách áp dụng vào việc giải bài tập. Phần II: Các dạng bài Phần này giới thiệu các dạng bài tập phổ biến trong chương trình Toán lớp 7 liên quan đến tam giác cân và đường trung trực. Học sinh sẽ được hướng dẫn cách chứng minh tam giác cân, sử dụng tính chất của tam giác cân để giải quyết bài toán, và vận dụng tính chất của đường trung trực. Phần III: Bài tập tự luyện Phần này chứa các bài tập tự luyện để học sinh ôn tập và củng cố kiến thức về tam giác cân và đường trung trực. Học sinh sẽ được thực hành cách chứng minh một điểm thuộc đường trung trực và cách chứng minh một đường thẳng là đường trung trực của một đoạn thẳng.
Chuyên đề các trường hợp bằng nhau của tam giác vuông lớp 7 môn Toán
Nội dung Chuyên đề các trường hợp bằng nhau của tam giác vuông lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề các trường hợp bằng nhau của tam giác vuông lớp 7 môn ToánPHẦN I. TÓM TẮT LÍ THUYẾTPHẦN II. CÁC DẠNG BÀIPHẦN III. BÀI TẬP TỰ LUYỆN Chuyên đề các trường hợp bằng nhau của tam giác vuông lớp 7 môn Toán Tài liệu này bao gồm 26 trang, với phần tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề các trường hợp bằng nhau của tam giác vuông trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT Phần này giúp sinh viên hiểu rõ về các trường hợp bằng nhau của tam giác vuông và cách chứng minh chúng. PHẦN II. CÁC DẠNG BÀI - Dạng 1: Hướng dẫn tìm hoặc chứng minh hai tam giác vuông bằng nhau bằng cách xét các điều kiện bằng nhau về cạnh – góc – cạnh, góc – cạnh – góc, cạnh huyền – góc nhọn, cạnh huyền – cạnh góc vuông. - Dạng 2: Sử dụng các trường hợp bằng nhau để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. Hướng dẫn cách tính độ dài đoạn thẳng, số đo góc bằng việc chọn hai tam giác vuông có cạnh (góc) cần tính hoặc chứng minh bằng nhau, tìm điều kiện bằng nhau và suy ra kết luận từ đó. PHẦN III. BÀI TẬP TỰ LUYỆN Phần này cung cấp các bài tập tự luyện để học sinh rèn luyện kỹ năng giải các bài toán liên quan đến các trường hợp bằng nhau của tam giác vuông.