Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Nam Bắc Giang

Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Nam Bắc Giang Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 - 2023 phòng GD ĐT Lục Nam Bắc Giang Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 - 2023 phòng GD ĐT Lục Nam Bắc Giang Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 7 bộ đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang. Đề thi bao gồm 60% câu hỏi trắc nghiệm và 40% câu hỏi tự luận, thời gian làm bài là 120 phút. Đề thi đi kèm đáp án và lời giải chi tiết, ngày thi dự kiến là 20/03/2023. Dưới đây là một số câu hỏi được trích dẫn từ Đề học sinh giỏi huyện Toán lớp 7 năm 2022 - 2023 phòng GD&ĐT Lục Nam - Bắc Giang: Một hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao lần lượt tỉ lệ với 3; 2; 1. Biết chiều cao bằng 2cm. Hãy tính thể tích của hình hộp chữ nhật. Cho ba đường thẳng phân biệt a, b, c. Hai đường thẳng a và b song song với nhau khi: A. a và b cùng cắt với c B. a và b cùng vuông góc với c C. a vuông góc với c D. b vuông góc với c Trong các dữ liệu sau, dữ liệu nào là số liệu? A. Xếp loại của các học sinh cuối năm học. B. Số học sinh đi học muộn trong một buổi học. C. Danh sách học sinh đạt học sinh giỏi của một lớp. D. Địa chỉ của các công nhân trong một tổ sản xuất. Đề còn có các câu hỏi khác về tam giác vuông, các mối quan hệ hình học và tính chất của các hình học cơ bản. Vui lòng tải file WORD để xem đầy đủ nội dung và chi tiết của Đề học sinh giỏi huyện Toán lớp 7 năm 2022 - 2023.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh năng khiếu Toán 7 năm 2023 - 2024 phòng GDĐT Tam Nông - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh năng khiếu môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tam Nông, tỉnh Phú Thọ; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề học sinh năng khiếu Toán 7 năm 2023 – 2024 phòng GD&ĐT Tam Nông – Phú Thọ : + Có sáu túi lần lượt chứa 9, 10, 12, 13, 17, 19 bóng trong đó có năm túi chứa bóng xanh và một túi chứa bóng đỏ. Bạn Hòa lấy ba túi bóng xanh, bạn Bình lấy hai túi bóng xanh, túi còn lại là bóng đỏ. Biết số bóng của bạn Hòa gấp đôi số bóng của bạn Bình. Số bóng đỏ là? + Cho ∆ABC vuông cân tại A, M là trung điểm của BC. Lấy điểm D nằm giữa hai điểm B và M. Gọi H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh: a) BH AI DN AB. b) AIM BHM. c) IM là phân giác của HIC. + Trong một hộp kín, chứa 3 viên bi xanh; 4 viên bi đỏ; 5 viên bi vàng. Xác suất để bạn Tú lấy ra 1 viên bi xanh là?
Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT Yên Mô - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Yên Mô, tỉnh Ninh Bình; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT Yên Mô – Ninh Bình : + Gieo ngẫu nhiên một con xúc xắc 1 lần, tìm xác suất của mỗi biến cố sau: a) “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố”. b) “Mặt xuất hiện của xúc xắc có số chấm là hợp số”. + Một bể bơi được xây dựng thành hai khu vực với độ sâu khác nhau cho trẻ em và người lớn và các kích thước của lòng bể được cho như hình vẽ. Hỏi sau bao lâu bể bơi được bơm đầy nước, biết cứ mỗi phút máy bơm được vào bể 500 lít nước. + Mỗi ô vuông đơn vị của bảng kích thước 10 10 × (10 dòng, 10 cột) được ghi một số nguyên dương không vượt quá 10 sao cho bất kỳ hai số nào ghi trong hai ô chung cạnh hoặc hai ô chung đỉnh của bảng là hai số nguyên tố cùng nhau. Chứng minh rằng tồn tại một số được ghi ít nhất 17 lần.
Đề Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Quốc Oai – Hà Nội : + Nhà trường thành lập 3 đội thi tuyên truyền Văn hoá ứng xử. Trong đó, 2 3 số học sinh đội I bằng 8 11 số học sinh đội II và bằng 4 5 số học sinh đội III. Biết rằng số học sinh đội I ít hơn tổng số học sinh của đội II và đội III là 18 học sinh. Tính số học sinh của mỗi đội. + Một chiếc hộp có 12 quả bóng có kích thước và khối lượng như nhau. Mỗi quả bóng được ghi một trong các số khác nhau từ 1 đến 12. Lấy ngẫu nhiên một quả bóng trong hộp. Xét biến cố “số xuất hiện trên quả bóng là số nguyên tố”. Tính xác suất của biến cố trên. + Có 6 túi lần lượt chứa 18, 19, 21, 23, 25, 34 quả bóng. Có 5 túi chứa bóng màu đỏ, túi còn lại chứa bóng màu xanh. Bạn Quốc lấy 3 túi, bạn Oai lấy 2 túi, còn lại túi chứa bóng xanh. Khi đó, tổng số bóng của Quốc gấp đôi tổng số bóng của Oai. Hỏi: a/ Số bóng màu xanh? b/ Bạn Quốc lấy 3 túi chứa những số bóng nào?
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Phú Vang - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Phú Vang, tỉnh Thừa Thiên Huế. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Phú Vang – TT Huế : + Cho n là số tự nhiên sao cho n chia 7 dư 3 và n chia 3 dư 1. Chứng minh rằng n chia 21 dư 10. + An và Bình cùng chơi trò chơi bốc bi. Ban đầu trên bàn có n viên bi, An và Bình lần lượt bốc một số bi trên bàn sao cho số bi bốc mỗi lượt từ một đến bốn viên. An là người bốc đầu tiên, người cuối cùng không còn bi để bốc là người thua cuộc. a) Chứng minh rằng khi n = 13 thì An luôn có cách bốc để là người chiến thắng. b) Chứng minh rằng khi n = 25 thì Bình luôn có cách bốc để là người chiến thắng. + Cho tam giác ABC vuông tại A và ABC = 2.ACB, tia phân giác góc A cắt BC tại I. Trên cạnh AC lấy điểm D sao cho AD = AB. a) Tính số đo góc ABC và chứng minh IB = ID. b) Gọi E là giao điểm của AB và ID. Chứng minh AIE = AIC và BD song song với EC. c) Chứng minh AC = AB + BI.