Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, hướng dẫn phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp, giúp học sinh học tốt chương trình Toán 8. A. TÓM TẮT LÍ THUYẾT Khi phân tích đa thức thành nhân tử, nếu cần ta phải phối hợp nhiều phương pháp để phân tích được triệt để. Các phương pháp thông thường: + Phương pháp ưu tiên số một là đặt nhân tử chung. + Phương pháp ưu tiên số hai là dùng hằng đẳng thức. + Cuối cùng là nhóm các hạng tử. Mục đích của việc nhóm các hạng tử nhằm làm cho quá trình phân tích đa thức thành nhân tử được tiếp tục bằng cách đặt nhân tử chung hoặc dùng hằng đẳng thức. Ngoài ra, ta còn có thể sử dụng các phương pháp nâng cao sau: + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp đổi biến. B. CÁC DẠNG TOÁN DẠNG 1 . Phối hợp các phương pháp thông thường. + Một số bài toán, nếu chỉ áp dụng một phương pháp thì ta không thể phân tích thành nhân tử được vì vậy ta phải kết hợp hai hoặc cả ba phương pháp đã nêu. + Khi phối phợp nhiều phương pháp, thông thường phương pháp đặt nhân tử chung được ưu tiên đầu tiên rồi đến nhóm hạng tử và hằng đẳng thức, một phương pháp có thể dùng nhiều lần. DẠNG 2 . Phương pháp tách một hạng tử thành nhiều hạng tử. + Tách các hạng tử của đa thức thành tổng hoặc hiệu của nhiều hạng tử, từ đó ta ghép cặp để được các nhóm hạng tử giống nhau và làm xuất hiện nhân tử chung. + Cách tổng quát để phân tích đa thức bậc hai ax2 + bx + c thành nhân tử là: • Tách bx thành b1x + b2x sao cho b1·b2 = ac. • Đặt nhân tử chung theo từng nhóm. + Đối với đa thức bậc ba trở lên thì tùy theo đặc điểm của các hệ số mà có cách tách riêng cho phù hợp. Một thủ thuật của loại này là dùng máy tính cầm tay nhẩm một nghiệm (thường là nghiệm nguyên, giả sử là x0), khi đó ta tìm cách ghép cặp làm sao cho xuất hiện nhân tử (x − x0) là được. DẠNG 3 . Phương pháp thêm bớt cùng một hạng tử. Khi phân tích đa thức thành nhân tử, đôi khi ta cần tăng thêm các hạng tử của đa thức bằng cách thêm và bớt cùng một hạng tử. Có hai cách thêm bớt thương gặp như sau: + Thêm và bớt cùng một hạng tử làm xuất hiện hiệu của hai bình phương. + Thêm và bớt cùng một hạng tử làm xuất hiện nhân tử chung. DẠNG 4 . Phương pháp đổi biến. + Khi gặp một đa thức phức tạp, ta nên dùng cách đặt ẩn phụ (thay một đa thức của biến cũ bằng một biến mới để được một đa thức đơn giản hơn, dễ phân tích hơn). + Sau khi phân tích với biến mới, ta thay trở lại biến cũ để phân tích tiếp (nếu được). DẠNG 5 . Tìm x thỏa một đẳng thức cho trước. Một tích bằng 0 khi một trong các nhân tử của nó bằng 0. Ta thực hiện theo các bước sau: + Chuyển tất cả sang vế trái để vế phải bằng 0. + Phân tích đa thức thành nhân tử để đưa về dạng tích. + Cho một trong các nhân tử bằng 0 và tìm x.

Nguồn: toanmath.com

Đọc Sách

26 chuyên đề bồi dưỡng học sinh giỏi Đại số 8
Tài liệu gồm 388 trang, tuyển tập 26 chuyên đề bồi dưỡng học sinh giỏi Đại số 8. Trong mỗi chuyên đề, bao gồm kiến thức cần nhớ, một số ví dụ và bài tập vận dụng có đáp số và hướng dẫn giải chi tiết. Chuyên đề 1. Phép nhân các đa thức. Chuyên đề 2. Các hằng đẳng thức đáng nhớ. Chuyên đề 3. Phân tích đa thức thành nhân tử. Chuyên đề 4. Hằng đẳng thức mở rộng. Chuyên đề 5. Phân tích đa thức thành nhân. Chuyên đề 6. Số chính phương. Chuyên đề 7. Chia đa thức cho đa thức. Chuyên đề 8. Phép chia hết trên tập hợp số nguyên. Chuyên đề 9. Phân thức đại số. Tính chất phân thức đại số. Chuyên đề 10. Rút gọn phân thức. Chuyên đề 11. Phép cộng và phép trừ các phân thức đại số. Chuyên đề 12. Phép nhân và phép chia các phân thức đại số. Chuyên đề 13. Biến đổi các phân thức hữu tỉ. Chuyên đề 14. Chứng minh đẳng thức đại số. Chuyên đề 15. Phương trình. Phương trình bậc nhất một ẩn. Chuyên đề 16. Phương trình đưa được về dạng ax + b = 0 (hay ax = -b). Chuyên đề 17. Phương trình tích. Chuyên đề 18. Phương trình chứa ẩn ở mẫu thức. Chuyên đề 19. Giải toán bằng cách lập phương trình. Chuyên đề 20. Phương trình nghiệm nguyên. Chuyên đề 21. Bất đẳng thức. Chuyên đề 22. Bất phương trình bậc nhất một ẩn. Chuyên đề 23. Bất phương trình dạng tích, thương. Chuyên đề 24. Phương trình. Bất phương trình chứa dấu giá trị tuyệt đối. Chuyên đề 25. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức. Chuyên đề 26. Đồng dư thức.
Đề cương HK2 Toán 8 năm 2022 - 2023 trường PT Thực hành Sư phạm - Đồng Nai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập kiểm tra cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường Phổ thông Thực hành Sư phạm, tỉnh Đồng Nai. A. LÝ THUYẾT I. Đại số. 1. Thế nào là hai phương trình tương đương. 2. Thế nào là hai bất phương trình tương đương. 3. Nêu các quy tắc biến đổi phương trình, bất phương trình. 4. Nêu định nghĩa phương trình bậc nhất một ẩn. 5. Nêu định nghĩa bất phương trình bậc nhất một ẩn. 6. Nêu các bước giải bài toán bằng cách lập phương trình. 7. Nêu cách giải bất phương trình bậc nhất một ẩn. 8. Nêu cách giải phương trình chứa dấu giá trị tuyệt đối. II. Hình học. 1. Phát biểu định lý Ta – lét trong tam giác. 2. Phát biểu định lý đảo và hệ quả của định lý Ta – lét. 3. Phát biểu tính chất đường phân giác của tam giác. 4. Phát biểu định nghĩa hai tam giác đồng dạng. 5. Nêu các trường hợp đồng dạng của tam giác. 6. Nêu các trường hợp đồng dạng của tam giác vuông. 7. Hình trong không gian: Hình hộp chữ nhật, hình lăng trụ đứng. B. BÀI TẬP
Đề cương ôn tập cuối kì 2 Toán 8 năm 2022 - 2023 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn nội dung ôn tập kiểm tra cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội. Phần 1 . Nội dung kiến thức cần ôn tập. 1. Các đơn vị kiến thức đã học từ tuần 19 đến hết tuần 30. 2. Một số câu hỏi trọng tâm. Câu 1. Khái niệm phương trình bậc nhất một ẩn? Hai phương trình tương đương? Câu 2. Nêu các quy tắc biến đổi tương đương phương trình? Câu 3. Nêu khái niệm bất đẳng thức, bất phương trình bậc nhất một ẩn? Mối liên hệ giữa thứ tự và phép tính (phép cộng, phép nhân)? Các quy tắc biến đổi bất phương trình? Câu 4. Phương pháp giải các phương trình bậc nhất một ẩn, phương trình tích, phương trình chứa ẩn ở mẫu, bất phương trình bậc nhất một ẩn, phương trình có chứa dấu giá trị tuyệt đối? Câu 5. Nêu các bước giải bài toán bằng các lập phương trình. Câu 6. Phát biểu, vẽ hình, viết GT-KL định lí Talet, định lí đảo và hệ quả của định lí Talet. Câu 7. Phát biểu, vẽ hình, viết GT–KL tính chất đường phân giác của tam giác. Câu 8. Nêu khái niệm hai tam giác đồng dạng, các trường hợp đồng dạng của tam giác. Câu 9. Khái niệm hình hộp chữ nhật, hình lập phương? Nêu các công thức tính diện tích xung quanh, diện tích toàn phần, thể tích của hình hộp chữ nhật, hình lập phương? Phần 2 . Một số dạng bài tập minh hoạ.
Đề cương học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Long Toàn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Long Toàn, tỉnh Bà Rịa – Vũng Tàu. I. CÁC KIẾN THỨC TRỌNG TÂM A. ĐẠI SỐ: + Phương trình bậc nhất một ẩn và phương trình đưa được về dạng ax + b = 0. + Phương trình tích A(x).B(x) = 0. + Phương trình chứa ẩn ở mẫu. + Giải bài toán bằng cách lập phương trình. + Bất phương trình bậc nhất một ẩn. + Phương trình có chứa dấu giá trị tuyệt đối. B. HÌNH HỌC: + Định lý Ta-lét. + Hệ quả của định lý Ta-lét. + Tính chất đường phân giác của tam giác. + Các trường hợp đồng dạng của hai tam giác và tính chất của hai tam giác đồng dạng. II. CÁC ĐỀ THAM KHẢO