Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 do phòng Giáo dục và Đào tạo Lương Tài tổ chức gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút, kỳ thi sẽ diễn ra vào ngày 13 tháng 04 năm 2021. Đề thi này được thiết kế nhằm đánh giá năng lực và kiến thức của học sinh lớp 7 trong môn Toán. Với bốn dạng bài toán khác nhau, kỳ thi đề cao khả năng tư duy, logic và khéo léo trong giải quyết vấn đề. Học sinh sẽ được đánh giá dựa trên khả năng áp dụng kiến thức học tập vào thực tế và khả năng giải quyết vấn đề theo cách sáng tạo. Tham gia kỳ thi HSG cấp huyện Toán là một cơ hội để học sinh thể hiện khả năng của mình, học hỏi thêm kinh nghiệm từ việc giải quyết các bài toán phức tạp. Kỳ thi không chỉ là cơ hội để học sinh thách thức bản thân mình mà còn là dịp để họ trau dồi kiến thức và kỹ năng trong môn Toán. Chúng ta hy vọng rằng kỳ thi sẽ mang lại những trải nghiệm tích cực và ý nghĩa cho học sinh, giúp họ phát triển không chỉ về kiến thức mà còn về tư duy và kỹ năng giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Hương Trà TT Huế
Nội dung Đề thi học sinh giỏi lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Hương Trà TT Huế Bản PDF - Nội dung bài viết Đề thi học sinh giỏi lớp 7 môn Toán năm 2021 - 2022 phòng GD ĐT Hương Trà TT Huế Đề thi học sinh giỏi lớp 7 môn Toán năm 2021 - 2022 phòng GD ĐT Hương Trà TT Huế Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thị xã môn Toán lớp 7 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo Hương Trà, tỉnh Thừa Thiên Huế. Đề thi học sinh giỏi Toán lớp 7 năm 2021 - 2022 của phòng GD&ĐT Hương Trà - TT Huế bao gồm các câu hỏi đa dạng như sau: Tìm độ dài ba cạnh của tam giác có chu vi bằng 13cm, biết độ dài ba đường cao tương ứng lần lượt là 2cm, 3cm, 4cm. Cho tam giác ABC có góc B và góc C nhỏ hơn 90°, kẻ đường cao AH (H thuộc BC), vẽ ra phía ngoài tam giác các tam giác vuông cân ABD và ACE, vẽ DI và EK cùng vuông góc với đường thẳng BC. Chứng minh rằng: a) BI = CK; EK = HC. b) BC = DI + EK. Tìm giá trị lớn nhất của biểu thức: P. Khi đó x nhận giá trị nguyên nào? Đề thi này sẽ giúp các em học sinh lớp 7 rèn luyện kỹ năng giải bài toán, tư duy logic và phản xạ nhanh. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Đức Thọ Hà Tĩnh
Nội dung Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Đức Thọ Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Đức Thọ Hà Tĩnh Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Đức Thọ Hà Tĩnh Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 7 đề thi Olympic môn Toán lớp 7 năm học 2021 – 2022 của phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh. Kỳ thi đã diễn ra vào ngày 08 tháng 04 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề thi Olympic Toán lớp 7 năm 2021 – 2022 của phòng GD&ĐT Đức Thọ – Hà Tĩnh: 1. Biết trung bình cộng của 16 số bằng 4. Thêm vào số thứ mười bảy thì trung bình cộng của chúng bằng 5. Hãy tìm số thứ mười bảy? 2. Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s, trên cạnh thứ ba với vận tốc 4 m/s, và trên cạnh thứ tư với vận tốc 3 m/s. Tính độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. 3. Cho tam giác ABC vuông cân tại A; M là trung điểm của cạnh BC. Lấy điểm D bất kỳ thuộc đoạn thẳng BM. Kẻ BH vuông góc với AD (H thuộc AD), CI vuông góc với AD (I thuộc AD). Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) ΔΑΗΒ = ΔCIA. c) IM là tia phân giác của góc CID. Hy vọng rằng đề thi Olympic Toán lớp 7 đã mang lại cho các em học sinh một cơ hội thực hành và rèn luyện kỹ năng Toán hữu ích. Chúc các em thành công trong kỳ thi này!
Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An
Nội dung Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An Bản PDF - Nội dung bài viết Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An Sytu xin được giới thiệu đến các thầy cô và các em học sinh lớp 7 đề thi Olympic môn Toán lớp 7 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Đề thi Olympic này sẽ giúp các em học sinh rèn luyện kỹ năng giải toán, phát triển tư duy logic và khả năng suy luận. Hy vọng rằng đề thi sẽ mang lại cơ hội cho các em tỏa sáng và thể hiện khả năng của mình trong môn Toán.
Đề thi HSG cấp trường lớp 7 môn Toán năm 2020 2021 trường THCS Cẩm Bình Hà Tĩnh
Nội dung Đề thi HSG cấp trường lớp 7 môn Toán năm 2020 2021 trường THCS Cẩm Bình Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp trường lớp 7 môn Toán năm 2020-2021 trường THCS Cẩm Bình Hà Tĩnh Đề thi HSG cấp trường lớp 7 môn Toán năm 2020-2021 trường THCS Cẩm Bình Hà Tĩnh Đề thi HSG cấp trường môn Toán lớp 7 năm học 2020-2021 của trường THCS Cẩm Bình - Hà Tĩnh là bài thi có tính chất khá nặng, yêu cầu kiến thức và sự suy luận logic cao. Bài thi gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trong đề thi, có một số câu hỏi khó như: + Trong tam giác ABC, các tia phân giác của góc B và góc C cắt nhau tại O. Hỏi số đo của góc A khi biết BOC = 120°? + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC. Bài thi này đòi hỏi sự tư duy, logic và kiến thức toán học sâu rộng từ các em học sinh lớp 7. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng giải toán và tự tin hơn trong việc học Toán.