Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm thể tích khối đa diện và khoảng cách có lời giải chi tiết - Phạm Văn Huy

Tài liệu gồm 120 trang, với các bài toán trắc nghiệm thuộc chuyên đề thể tích khối đa diện và khoảng cách, các bài toán có đáp án và lời giải chi tiết. + Chủ đề 1. Thể tích (Gồm 113 bài toán) + Chủ đề 2. Khoảng cách (Gồm 31 bài toán) + Chủ đề 3. Mặt trụ – Hình trụ – Khối trụ (Gồm 40 bài toán) + Chủ đề 4. Mặt cầu – Hình cầu – Khối cầu (Gồm 44 bài toán) [ads] Trích dẫn tài liệu : + Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, G là trọng tâm tam giác ABC, SG ⊥ (ABC). Biết góc giữa SM và mặt phẳng (ABC) bằng 30 độ (với M là trung điểm của BC), BC = 2a và AB = 5a. Tính 9V/a^3 với V là thể tích khối chóp S.ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a. Cạnh bên SA vuông góc với mặt phẳng đáy, SC tạo với mặt phẳng đáy một góc 45 độ và SC = 2a√2. Thể tích khối chóp S.ABCD bằng? + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy góc 60 độ. Gọi M là điểm đối xứng với C qua D và N là trung điểm của SC. Tính tỉ số thể tích giữa hai phần của hình chóp do mặt phẳng (BMN) tạo ra khi cắt hình chóp.

Nguồn: toanmath.com

Đọc Sách

81 bài tập trắc nghiệm phương pháp tọa độ trong không gian - Hà Hữu Hải
Tài liệu gồm 11 trang với các bài tập trắc nghiệm phương pháp tọa độ trong không gian có đáp án. Trích dẫn tài liệu : + Trong không gian với hệ trục Oxyz, cho 3 điểm A(1; 0; 0), B(0; 2; 0), C(0; 0; 3). Viết phương trình mặt phẳng đi qua 3 điểm A, B, C. A. 6x – 3y + 2z – 6 = 0 B. 6x + 3y + 2z + 6 = 0 C. x + 2y + 3z – 1 = 0 D. 6x + 3y + 2z – 6 = 0 [ads] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(1; 1; 3), N(1; 1; 5), P(3; 0; 4). Phương trình nào sau đây là phương trình mặt phẳng đi qua điểm M và vuông góc với đường thẳng NP? A. x – y – z + 3 = 0 B. x – 2y – z − 0 = 0 C. 2x – y – z + 2 = 0 D. 2x – y + z – 4 = 0 + Phương trình mặt phẳng đi qua 3 điểm A(0; 0; 1), B(2; 1; -1), C(-1; -2; 0) là: A. 5x – 4y + 3z – 3 = 0 B. 5x – 4y + 3z – 9 = 0 C. 5x – y + 3z – 33 = 0 D. x – 4y + z – 6 = 0
Bài tập trắc nghiệm phương pháp tọa độ trong không gian - Đặng Ngọc Hiền
Tài liệu gồm 17 trang tuyển chọn các bài tập trắc nghiệm phương pháp tọa độ trong không gian. Tóm tắt lý thuyết và công thức cơ bản I. Vectơ pháp tuyến của mặt phẳng II. Phương trình mặt phẳng III. Khoảng cách từ một điểm đến một mặt phẳng IV. Vị trí tương đối của hai mặt phẳng VI. Góc giữa hai mặt phẳng Các dạng toán và bài tập trắc nghiệm Loại 1. Vectơ pháp tuyến của mặt phẳng Loại 2. Viết phương trình mặt phẳng (biết điểm và VTPT của mặt phẳng) Loại 3. Viết phương trình mặt phẳng (phương trình mặt phẳng theo đoạn chắn) [ads] Loại 4. Viết phương trình mặt phẳng (biết VTPT và một điều kiện) Loại 5. + Khoảng cách từ một điểm đến một mặt phẳng + Vị trí tương đối của hai mặt phẳng Loại 6. + Vị trí tương đối giữa mặt phẳng và mặt cầu. + Hình chiếu của một điểm lên mặt phẳng Loại 7. + Góc giữa hai mặt phẳng + Phương trình mặt phẳng (Biết hai điểm thuộc mặt phẳng và góc)
Bài tập trắc nghiệm chuyên đề hình học tọa độ Oxyz - Đặng Việt Đông
Tài liệu gồm 47 trang, với phần tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình học tọa độ Oxyz. Các bài toán được được phân dạng thành: + Tọa độ điểm, tọa độ véc tơ và các phép toán véc tơ (75 câu) + Phương trình mặt phẳng (86 câu) + Phương trình đường thẳng (31 câu) + Phương trình mặt cầu (49 câu) + Khoảng cách (34 câu) + Góc (15 câu) + Vị trí tương đối giữa điểm, mặt phẳng, đường thẳng, mặt cầu (50 câu) + Tìm điểm thỏa mãn yêu cầu bài toán (51 câu) [ads]
Bài tập tọa độ không gian phân theo dạng có lời giải chi tiết - Trần Sĩ Tùng
Tài liệu gồm 67 trang, tuyển chọn bài tập các dạng toán phương pháp tọa độ không gian có lời giải chi tiết. TĐKG 01: VIẾT PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng bằng cách xác định vectơ pháp tuyến Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách Dạng 4: Viết phương trình mặt phẳng liên quan đến góc Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác Dạng 6: Các dạng khác về viết phương trình mặt phẳng TĐKG 02: VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách Dạng 5: Viết phương trình đường thẳng liên quan đến góc Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác [ads] TĐKG 03: VIẾT PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Viết phương trình mặt cầu bằng cách xác định tâm và bán kính Dạng 2: Viết phương trình mặt cầu bằng cách xác định các hệ số của phương trình Dạng 3: Các bài toán liên quan đến mặt cầu TĐKG 04: TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC Dạng 1: Xác định điểm thuộc mặt phẳng Dạng 2: Xác định điểm thuộc đường thẳng Dạng 3: Xác định điểm thuộc mặt cầu Dạng 4: Xác định điểm trong không gian Dạng 5: Xác định điểm trong đa giác