Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng

Tài liệu gồm 13 trang, được biên soạn bởi tác giả Hoàng Xuân Bính (giáo viên Toán trường THPT chuyên Biên Hòa, Hà Nam), hướng dẫn phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng. Trong bài toán thuộc chủ đề khoảng cách thì ta thấy thường xuất hiện bài toán tính khoảng cách giữa hai đường thẳng chéo nhau. Do đó, mình viết chuyên đề này để giúp các thầy cô và các em học sinh có một hướng tiếp cận khi giải quyết bài toán này. I. Kiến thức cơ bản cần nhớ II. Nội dung chuyên đề Để giúp học sinh và các thầy cô có một cách tiếp cận về loại bài tập này, tôi xin trình bày: Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường với mặt. a) Phương pháp: Để tính khoảng cách giữa hai đường thẳng chéo nhau trong chuyên đề này, chúng ta sử dụng phương pháp đường song song với mặt: Cho a, b là hai đường thẳng chéo nhau thì ta luôn có: d(a;b) = d(a;(P)) với b ⊂ P và a // (P). b) Các tính chất hình học phẳng thường được sử dụng: – Loại 1: Khai thác tính chất hình bình hành (hoặc trong các hình hình thoi, hình chữ nhật, hình vuông): Trong một hình bình hành thì hai cặp cạnh đối diện luôn song song với nhau. – Loại 2: Khai thác tính chất đường trung bình của tam giác. Chú ý: + Để khai thác tính chất đường trung bình trong tam giác, ta chú ý tới các yếu tố trung điểm có sẵn trong đề bài từ đó xây dựng thêm một trung điểm mới để thiết lập đường trung bình từ đó xác định được yếu tố song song mà ta sẽ chuyển đổi được khoảng cách giữa đường với đường về đường với mặt. + Với bài toán có liên quan tới bài toán về hình hộp hoặc lăng trụ tam giác thì ta chú ý một tính chất quen thuộc của lăng trụ là: tâm của các mặt bên cũng chính là trung điểm của hai đường chéo của mặt bên đó. III. Bài tập minh họa Trong chuyên đề này, tôi xin chia các bài toán áp dụng được phương pháp này thành 2 dạng: + Dạng 1. Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về hình chóp. + Dạng 2: Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về lăng trụ. IV. Bài tập tự luyện

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải nhanh hình không gian - Trần Duy Thúc
Tài liệu gồm 77 trang gồm lý thuyết, công thức và hướng dẫn phương pháp giải nhanh bài toán hình học không gian thông qua các ví dụ điển hình có lời giải chi tiết. Lời giới thiệu của tác giả : Câu hình học không gian là một nội dung quan trọng trong đề thi của Bộ Giáo Dục và Đào Tạo. Câu này không quá khó. Tuy nhiên nhiều Em học sinh cũng lúng túng khi gặp phần này. Đặc biệt là khi các Em tính khoảng cách hay ý sau của bài toán. Với mục tiêu có thể giúp Em cảm thấy nhẹ nhàng với hình học không gian và có thể lấy được trọn điểm câu này. Thầy biên soạn một quyển tài liệu PHƯƠNG PHÁP GIẢI NHANH HÌNH KHÔNG GIAN gửi đến các Em. Với cách hệ thống lý thuyết và các ví dụ được xây dựng từ cái góc của vấn đề, nâng dần đến giải quyết các vấn đề tổng quát. Thầy tin rằng có thể mang đến cho các Em một cái nhìn hết sức rõ ràng về hình không gian và có được sự tự tin về hình học không gian. [ads] Để thuận lợi cho việc đọc tài liệu Thầy chia ra thành 3 chương: + Chương 1. Tóm tắt lý thuyết quan trọng + Chương 2. Phân dạng các bài toán khoảng cách + Chương 3. Thể tích và các bài toán liên quan Bạn đọc có thể xem thêm tài liệu Các dạng bài tập trắc nghiệm hình học không gian – Trần Duy Thúc để vận dụng các kiến thức học được trong chuyên đề này.
Bài toán cực trị hình học trong không gian - Quách Đăng Thăng
Tài liệu gồm 20 trang hướng dẫn phương pháp giải bài toán cực trị hình học không gian thông qua các ví dụ có lời giải chi tiết. Tài liệu sáng kiến kinh nghiệm của thầy Quách Đăng Thăng trình bày phương pháp về các bài toán cực trị hình học trong không gian như: Tìm điểm, tìm độ dài để thể tích đa diện, độ dài đoạn thẳng đạt lớn nhất, nhỏ nhất. Thực tế giảng dạy cho thấy môn Toán học trong trường phổ thông là một trong những môn học khó, phần lớn các em học môn Toán rất yếu đặc biệt là hình học không gian, nếu không có những bài giảng và phương pháp dạy môn Hình học phù hợp đối với thế hệ học sinh thì dễ làm cho học sinh thụ động trong việc tiếp thu, cảm nhận. Đã có hiện tượng một số bộ phận học sinh không muốn học Hình học, ngày càng xa rời với giá trị thực tiễn của Hình học. Nhiều giáo viên chưa quan tâm đúng mức đối tượng giáo dục, chưa đặt ra cho mình nhiệm vụ và trách nhiệm nghiên cứu, hiện tượng dùng đồng loạt cùng một cách dạy, một bài giảng cho nhiều lớp, nhiều thế hệ học trò vẫn còn nhiều. Do đó phương pháp ít có tiến bộ mà người giáo viên đã trở thành người cảm nhận, truyền thụ tri thức một chiều, còn học sinh không chủ động trong quá trình lĩnh hội tri thức – kiến thức Hình học làm cho học sinh không thích học môn Hình học. [ads] Tuy nhiên với việc đại số hóa hình học thì các bài toán hình học không gian trở lên đơn giản và dễ nhìn hơn. Gần đây trong các đề thi Đại học hàng năm đã bắt đầu xuất hiện các bài toán cực trị hình học trong không gian mà đôi khi việc giải các bài toán này một cách trực tiếp bằng kiến thức hình học không gian thuần tuy là vô cùng khó khăn. Chính vì lý do đó tôi chọn đề tài Bài toán cực trị hình học trong không gian. Trong phạm vi bài viết này, với mong muốn giúp các e có thêm một tài liệu ôn thi Đại học – Cao đẳng và đồng thời để các e hiểu được rằng bài toán cực trị nói chung và bài toán cực trị trong hình học không gian không phải là quá khó không thể giải quyết được. Đối tượng áp dụng chủ yếu cho tài liệu này về cơ bản là trên lớp 12A2, ngoài ra tôi cũng đan xen trong các tiết học của các lớp 12A6 và 12A8. Đối tượng nghiên cứu là các tài liệu sách giáo khoa Hình học 12, sách bài tập Hình học 12 cơ bản và nâng cao, các bài giảng trên mạng Internet, các tài liệu và forum trên các diễn đàn Toán học trên mạng Internet cùng một số tài liệu tham khảo khác.
29 bài toán hình lăng trụ xiên - Trần Đình Cư
Tuyển tập gồm 18 trang tuyển tập 29 bài toán hình lăng trụ xiên của tác giả Trần Đình Cư, mỗi bài toán đều có lời giải chi tiết. Trích dẫn tài liệu : + Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình chữ nhật, AB = a, AD = b, cạnh bên AA’ hợp với mặt đáy (ABCD) một góc bằng 60 độ, mặt bên AA’D’D là hình thoi có góc A’AD nhọn và nằm trong mặt phẳng vuông góc với đáy (ABCD). a. Tính thể tích của khối tứ diện ACDD’ b. Xác định và tính độ dài đoạn vuông góc chung giữa AA’ và CD [ads] + Cho hình lăng trụ ABC.A’B’C’, đáy ABC có AC = a√3, BC = 3a, ACB = 30 độ. Cạnh bên hợp với mặt phẳng đáy góc 60 độ và mặt phẳng (A’BC) vuông góc với mặt phẳng (ABC). Điểm H trên cạnh BC sao cho HC = 3BH và mặt phẳng (A’AH) vuông góc với mặt phẳng (ABC). Tính thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách từ B đến mặt phẳng (A’AC). + Cho hình lăng trụ ABC.A’B’C’ có độ dài tất cả các cạnh bằng a và hình chiếu của đỉnh C trên mặt phẳng (ABB’A’) là tâm của hình bình hành ABB’A’. Tính thể tích của khối lăng trụ.
Tính khoảng cách trong hình học không gian bằng phương pháp thể tích - Nguyễn Tuấn Anh
Tài liệu gồm 14 trang hướng dẫn giải bài toán tính khoảng cách trong hình học không gian bằng phương pháp thể tích và các ví dụ minh họa. Câu khoảng cách của hình học không gian (thuần túy) trong đề thi THPTQG dù không là một câu khó nhưng để có thể nhìn được chân đường cao hoặc đoạn vuông góc chung đối với học sinh trung bình yếu không phải dễ. Bài viết mong muốn giúp các em tự tin hơn với câu này, dù là điểm 8,9,10 là khó lấy, nhưng điểm 7 với các em thì hoàn toàn có thể. (Bài viết có tham khảo nhiều nguồn khác nhau nên khó lòng trích dẫn các nguồn ở đây xin chân thành cám ơn các tác giả, các nguồn tài liệu đã tham khảo để viết bài này). [ads] Ý tưởng: Ta có một hình chóp: S.ABC việc tính thể tích của khối chóp này được thực hiện rất dễ dàng (đường cao hạ từ S xuống mặt đáy (ABC)), ta cần tính khoảng cách từ C đến (SAB) tức tìm chiều cao CE. Vì thể của hình chóp là không thay đổi dù ta có xem điểm nào đó (S, A, B, C) là đỉnh vì vậy nếu ta biết diện tích ∆SAB thì khoảng cách cần tìm đó CE = 3V/SΔSAB. Có thể gọi là dùng thể tích 2 lần. Chú ý: Khi áp dụng phương pháp này ta cần nhớ công thức tính diện tích của tam giác: SΔSAB = √p,(p – a)(p – b)(p – c) với p là nửa chu vi và a, b, c là kích thước của 3 cạnh.