Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT tỉnh Quảng Ninh

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT tỉnh Quảng Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021-2022 sở GD ĐT tỉnh Quảng Ninh Đề tuyển sinh môn Toán năm 2021-2022 sở GD ĐT tỉnh Quảng Ninh Vào sáng thứ Tư, ngày 02 tháng 06 năm 2021, Sở Giáo dục và Đào tạo tỉnh Quảng Ninh đã tổ chức kỳ thi tuyển sinh vào lớp 10 hệ THPT môn Toán cho năm học 2021-2022. Đề tuyển sinh này dành cho mọi thí sinh và gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021-2022 sở GD&ĐT tỉnh Quảng Ninh: + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Lớp 9B có 42 học sinh. Vừa qua lớp đã phát động phong trào tặng sách cho các bạn đang cách ly vì dịch bệnh Covid-19. Tại buổi phát động, mỗi học sinh trong lớp đều tặng 3 quyển sách hoặc 5 quyển sách. Kết quả cả lớp đã tặng được 146 quyển sách. Hỏi lớp 9B có bao nhiêu bạn tặng 3 quyển sách và bao nhiêu bạn tặng 5 quyển sách? + Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (O) (A là tiếp điểm). Qua A kẻ đường thẳng song song với MO, đường thẳng này cắt đường tròn (O) tại C (C khác A). Đường thẳng MC cắt đường tròn (O) tại điểm B (B khác C). Gọi H là hình chiếu của O trên BC. a. Chứng minh tứ giác MAHO nội tiếp. b. Chứng minh AB/AC = MA/MC. c. Chứng minh BAH = 90°. d. Vẽ đường kính AD của đường tròn (O). Chứng minh hai tam giác ACH và DMO đồng dạng. + Cho các số thực không âm a và b. Tìm giá trị nhỏ nhất của biểu thức P.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Vĩnh Phúc
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Vĩnh Phúc Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GD&ĐT Vĩnh Phúc. Đề thi được biên soạn theo hình thức 20% trắc nghiệm và 80% tự luận (theo điểm số), gồm tổng cộng 12 câu hỏi. Thời gian làm bài là 120 phút, có đáp án và lời giải chi tiết.Một số ví dụ câu hỏi trong đề tuyển sinh:1. Cho parabol $P: y=mx^2$ và đường thẳng $d: y=mx+2$ (với $m$ là tham số). Tìm tất cả các giá trị của tham số $m$ để đường thẳng $d$ cắt parabol $P$ tại hai điểm phân biệt có $A(x_1, y_1)$ và $B(x_2, y_2)$ sao cho $2x_1 + x_2 = 1$ và $2y_1 + y_2 = 2$.2. Một đội công nhân A và B làm chung một công việc và dự định hoàn thành trong 12 ngày. Khi làm chung được 8 ngày, đội B tiếp tục làm phần việc còn lại với năng suất tăng gấp đôi. Hỏi với năng suất ban đầu, mỗi đội làm một mình sẽ hoàn thành công việc đó trong bao lâu?3. Cho đường tròn $O$ và điểm $A$ nằm ngoài đường tròn. Chứng minh rằng tứ giác $ABOC$ nội tiếp đường tròn và làm các bước tiếp theo để chứng minh tương quan giữa các đường thẳng và đoạn thẳng trong hình vẽ.Đề thi được soạn để kiểm tra kiến thức, kỹ năng và sự logic của các em học sinh. Chúc quý thầy cô và các em đạt kết quả tốt trong kỳ thi sắp tới. Hãy cố gắng và tự tin trước mỗi câu hỏi!
Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bến Tre
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bến Tre Đề thi tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bến Tre Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 của sở GD&ĐT Bến Tre. Đề thi này bao gồm các câu hỏi đa dạng với đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Trích dẫn một số câu hỏi trong đề tuyển sinh: + Cho tam giác ABC vuông tại A với (AB AC) có đường cao AH. Biết BC = 1dm và 12 dm 25 AH. Hãy tính độ dài hai cạnh AB và AC. Kẻ HD // AB; HE // AC (với D // AB, E // AC). Gọi I là trung điểm của BC. Chứng minh IA // DE. + Cho tam giác ABC có đường phân giác ngoài của góc A cắt đường thẳng BC tại điểm D. Gọi M là trung điểm của BC. Đường tròn ngoại tiếp ADM cắt các đường thẳng AB, AC lần lượt tại E và F (với E, F khác A). Gọi N là trung điểm của EF. Chứng minh rằng MN // AD. + Cho phương trình: 2x m + 3 - 4m^2 + 4 = 0, với m là tham số. Tìm m sao cho phương trình có hai nghiệm phân biệt x1 và x2 thỏa 1/x1 + 1/x2 = 20. Đề thi tuyển sinh này sẽ giúp các em học sinh rèn luyện kỹ năng và kiến thức toán học, để chuẩn bị tốt nhất cho kỳ thi sắp tới. File WORD đã được chuẩn bị sẵn để quý thầy cô tham khảo.
Đề tuyển sinh chuyên môn Toán năm 2021 2022 sở GD ĐT Hải Phòng
Nội dung Đề tuyển sinh chuyên môn Toán năm 2021 2022 sở GD ĐT Hải Phòng Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2021-2022 sở GD&ĐT Hải Phòng Đề tuyển sinh chuyên môn Toán năm 2021-2022 sở GD&ĐT Hải Phòng Sytu xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021-2022 sở GD&ĐT Hải Phòng. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm theo bảng chính thức được công bố bởi sở Giáo dục và Đào tạo thành phố Hải Phòng. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021-2022 sở GD&ĐT Hải Phòng: 1. **Phương trình (ẩn x; tham số a b)** - Tìm các cặp số thực (a;b) sao cho cả hai phương trình đều có hai nghiệm phân biệt thỏa mãn: - Phương trình (1): a 0 x² + b 1 x + 1 = 0 - Phương trình (2): a 0 x² - b 1 x + 21 = 0 2. **Tam giác ABC** - ABC là tam giác nhọn, nội tiếp đường tròn (O). I là tâm đường tròn bàng tiếp trong góc BAC. - Gọi D là giao điểm của AI và BC, E là giao điểm của AD và đường tròn (O). a) Chứng minh E là tâm đường tròn ngoại tiếp tam giác IBC. b) Kẻ H là hình chiếu của I trên BC. EH cắt đường tròn (O) tại F. Chứng minh AF ⊥ FI. c) Đường thẳng FD cắt đường tròn (O) tại M (F M), IM cắt đường tròn (O) tại N (N M). Đường thẳng qua O và song song với FI cắt AI tại J, đường thẳng qua J và song song với AH cắt IH tại P. Chứng minh ba điểm N, E, P thẳng hàng. 3. **Tập hợp X = {1;2;3...;101}** - Tìm số tự nhiên n (n ≥ 3) nhỏ nhất sao cho đối với mọi tập con A gồm n phần tử của X, luôn tồn tại 3 phần tử đôi một phân biệt a, b, c sao cho a+b=c.
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam Bản PDF Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà NamSytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 từ sở GD&ĐT Hà Nam. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm theo bảng chính thức do sở Giáo dục và Đào tạo tỉnh Hà Nam công bố.Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam:- Cho đường tròn O đường kính AB R=2. Gọi ∆ là tiếp tuyến của O tại A. Trên ∆ lấy điểm M sao cho MA R. Qua M vẽ tiếp tuyến MC (C thuộc đường tròn O, C khác A). Gọi H và D lần lượt là hình chiếu vuông góc của C trên AB và AM. Gọi d là đường thẳng đi qua điểm O và vuông góc với AB. Gọi N là giao điểm của d và BC.1. Chứng minh OM // BN và MC = NO.2. Gọi Q là giao điểm của MB và CH, K là giao điểm của AC và OM. Chứng minh đường thẳng QK đi qua trung điểm của đoạn thẳng BC.3. Gọi F là giao điểm của QK và AM, E là giao điểm CD và OM. Chứng minh tứ giác FEQO là hình bình hành. Khi M thay đổi trên ∆, tìm giá trị lớn nhất của QF EO.- Giải phương trình 3xy+2xz=3 2021 với x, y và z là các số nguyên.- Cho hình vuông ABCD có độ dài cạnh bằng 1. Bên trong hình vuông người ta lấy tùy ý 2021 điểm phân biệt A1, A2, A3,... sao cho 2025 điểm A1A2A3... không có ba điểm nào thẳng hàng. Chứng minh rằng từ 2025 điểm trên luôn tồn tại 3 điểm là 3 đỉnh của hình tam giác có diện tích không quá 1.File WORD (dành cho quý thầy, cô): Download here Hy vọng đề tuyển sinh này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi và đạt kết quả cao. Chúc quý thầy, cô và các em thành công!