Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Bình Phước

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 04 tháng 11 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Phước : + Gọi S là tập hợp các số tự nhiên có 5 chữ số đôi một khác nhau và các chữ số này được lấy từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ tập S, tính xác suất để số được chọn là số chẵn trong đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp tứ giác đều S.ABCD có O là giao điểm của AC và BD. Biết SO a 2 góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 0 45. a) Tính thể tích khối chóp S.ABCD theo a. b) Gọi K là điểm di động trong mặt phẳng (ABCD). Tìm SAK để biểu thức SA AK T SK đạt giá trị lớn nhất. + Cho hình trụ có đường kính đáy bằng 4 5. Một mặt phẳng không vuông góc với đáy và cắt hai đáy theo hai dây cung song song MN M N thoả mãn MN M N 8 4. Biết rằng tứ giác MNN M có diện tích bằng 54. Tính thể tích khối trụ đã cho.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 12 THPT năm 2021 - 2022 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Cho hàm số y f x có bảng biến thiên như hình vẽ sau Khẳng định nào sau đây đúng? A. Đồ thị hàm số không có tiệm cận. B. Hàm số nghịch biến trên các khoảng và C. Đồ thị hàm số có ba đường tiệm cận. D. Hàm số có giá trị lớn nhất bằng 1 và giá trị nhỏ nhất bằng 0. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB a AD b và cạnh bên SA c vuông góc với mặt phằng (ABCD). Gọi M là một điếm trên cạnh SA sao cho AM x 0 x c. Tìm x để mặt phằng (MBC) chia khối chóp thành hai khối đa diện có thể tích bằng nhau. + Cho 3 số abc theo thứ tự lập thành cấp số nhân với công bội khác 1. Biết cũng theo thứ tự đó chúng lần lượt là số thứ nhất, thứ tư và thứ tám của một cấp số cộng công sai là d. Tính a d.
Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 - 2022 sở GDĐT Cà Mau
Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 – 2022 sở GD&ĐT Cà Mau gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 01 năm 2022.
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh gồm 01 trang với 09 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Tại một ga tàu có 5 khách lên tàu một cách ngẫu nhiên. Biết rằng đoàn tàu có 5 toa tàu và mỗi toa có đủ chỗ cho 5 khách. Tính xác suất để ít nhất 3 toa có khách lên. + Người ta muốn sản xuất một cái thùng đựng dầu có dạng hình trụ với nắp đậy và dung tích là 1m. Biết chi phí sản xuất mặt đáy của thùng là 1000000 đồng trên 1m2 và chi phí sản xuất mặt bên của thùng là 1200000 đồng trên 1m2. Hỏi phải sản xuất thùng với bán kính đáy bằng bao nhiêu để chi phí sản xuất thấp nhất. + Cho hình chóp tứ giác đều S.ABCD có SA = a11. a) Biết cosin của góc hợp bởi hai mặt phẳng (SBC) và (SCD) bằng a. Tính thể tích của khối chóp S.ABCD. b) Biết cạnh đáy AB = a2, gọi X là điểm di động trong mặt phẳng (ABCD), tìm giá trị lớn nhất của biểu thức k = (SB + BX)/SX.
Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 - 2022 sở GDĐT Bình Dương
Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Bình Dương gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giám thị coi thi phát đề), kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2021, đề thi có đáp án và lời giải chi tiết (đáp án và lời giải chi tiết được biên soạn bởi quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán). Trích dẫn đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Bình Dương : + Một hàng cây bưởi Tân Uyên gồm 17 cây thẳng hàng được đánh số cây theo thứ tự là các số tự nhiên từ 1 đến 17. Ban đầu mỗi cây có một con ong đậu trên đó để hút mật hoa. Sau đó, cứ mỗi giờ có hai con ong nào đó bay sang hai cây bên cạnh để tìm và hút mật nhưng theo hai chiều ngược nhau. Hỏi sau một số giờ, có hay không trường hợp mà: a) Không có con ong ở cây có thứ tự chẵn. b) Có 9 con ong ở cây cuối cùng. + Cho tam giác ABC có I là tâm đường tròn nội tiếp. Gọi M N P lần lượt là các điểm nằm trên các cạnh BC CA AB sao cho AN AP BP BM CM CN. Gọi X Y Z lần lượt là tâm đường tròn nội tiếp của các tam giác ANP BPM CMN. Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác XYZ. + Cho tứ giác ABCD nội tiếp đường tròn O. Đường thẳng qua C cắt các tia đối của tia BA DA lần lượt tại M và N. Chứng minh rằng 2 4 BCD AMN S BD S AC.