Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2024 - 2025 phòng GDĐT Hải Hậu - Nam Định

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh lớp 10 chuyên năm 2020 2021 sở GDĐT Nam Định (Đề 2)
Sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2) là đề chung được sử dụng cho các thí sinh thi vào các lớp chuyên xã hội, đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2) : + Tính bán kính đường tròn ngoại tiếp tam giác đều ABC, biết độ dài cạnh của tam giác là √3 cm. + Từ điểm A nằm ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC đến đường tròn (B và C là các tiếp điểm). Đoạn thẳng AO cắt BC và đường tròn (O) lần lượt tại M và I. 1) Chứng minh rằng ABOC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. 2) Gọi D là điểm thuộc cung lớn BC của đường tròn (O) (với DB < DC) và K là giao điểm thứ hai của tia DM với đường tròn (O). Chứng minh rằng MD.MK = MA.MO. [ads] 3) Gọi E và F lần lượt là hình chiếu vuông góc của A trên các đường thẳng DB và DC. Chứng minh AF song song với ME. + Xét a, b, c là các số dương thỏa mãn 2a + 2b + 2c + ab + bc + ca = 24. Tìm giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2.
Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GDĐT Nam Định (Đề 1)
Sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 1) là đề chung được sử dụng cho tất cả các thí sinh tham dự kỳ thi, đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 1) : + Cho phương trình x^2 – (m + 1)x + 2m – 2 = 0 (với m là tham số). a) Chứng minh rằng với mọi giá trị của tham số m thì phương trình luôn có nghiệm. b) Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm dương phân biệt x1, x2 sao cho √(x1 + 2) – √(x2 + 2) = 1. [ads] + Từ điểm A nằm ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC đến đường tròn (B và C là các tiếp điểm). Đoạn thẳng AC cắt BC và đường tròn (O) lần lượt tại M và I. Gọi D là điểm thuộc cung lớn BC của đường tròn (O) (với DB < DC). 1) Chứng minh rằng ABC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. 2) Gọi E, F lần lượt là hình chiếu vuông góc của A trên các đường thẳng DB, DC. Chứng minh DM vuông góc với EF. 3) Gọi K là giao điểm thứ hai của tia DM với đường tròn (O). Chứng minh KI là tia phân giác của AKM. + Tìm tất cả các giá trị của tham số m để đường thẳng y = x + 3m cắt parabol y = x^2 tại hai điểm phân biệt.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bình Dương
Sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán nhằm chuẩn bị cho năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Dương : + Cho phương trình: x^2 – 2020x + 2021 = 0 có hai nghiệm phân biệt x1 và x2. Không giải phương trình, tính giá trị của các biểu thức sau: 1/x1 + 1/x2; x1^2 + x2^2. + Cho Parabol (P): y = 3/2x^2 và đường thẳng (d): y = -3/2x + 3. 1) Vẽ đồ thị của (P) và (d) trên cùng một mặt phẳng tọa độ. 2) Tìm tọa độ các giao điểm của (P) và (d) bằng phép tính. [ads] + Cho đường tròn (O;3cm) có đường kính AB và tiếp tuyến Ax. Trên Ax lấy điểm C sao cho AC = 8cm, BC cắt đường tròn (O) tại D. Đường phân giác của góc CAD cắt đường tròn (O) tại M và cắt BC tại N. 1) Tính độ dài đoạn thẳng AD. 2) Gọi E là giao điểm của AD và MB. Chứng minh tứ giác MNDE nội tiếp được trong đường tròn. 3) Chứng minh tam giác ABN là tam giác cân. 4) Kẻ EF vuông góc AB (F thuộc AB). Chứng minh: N, E, F thẳng hàng.
Đề khảo sát vào lớp 10 môn Toán năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Thứ Năm ngày 25 tháng 06 năm 2020, phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán ôn thi tuyển sinh vào lớp 10 năm học 2020 – 2021. Đề khảo sát vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 90 phút, cấu trúc đề bám sát đề tuyển sinh lớp 10 môn Toán của sở Giáo dục và Đào tạo thành phố Hà Nội những năm gần đây. Trích dẫn đề khảo sát vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội : + Một tàu tuần tra chạy ngược dòng 60 km, sau đó chạy xuôi dòng 48km trên cùng một dòng sông có vận tốc của dòng nước là 2km/h. Tính vận tốc của tàu tuần tra khi nước yên lặng, biết thời gian xuôi dòng ít hơn thời gian ngược dòng là 60 phút. + Một bồn nước inox dạng hình trụ có chiều cao 1,8m và diện tích đáy là 1,25m2. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (bỏ qua bề dày của bồn nước). [ads] + Cho đường tròn tâm O bán kính R, kẻ đường kính AB. Gọi d là tiếp tuyến của (O) tại A. Lấy C là một điểm bất kì trên d (điểm C khác điểm A). Từ C kẻ tiếp tuyến thứ hai CM với (O) (M là tiếp điểm). Kẻ MH vuông góc với AB tại H. Gọi E là giao điểm của CO và MA, gọi K là giao điểm của CB và MH. 1) Chứng minh tứ giác AOMC nội tiếp. 2) Chứng minh EA.MH = EO.HA. 3) Kéo dài BM cắt d tại N. Chứng minh C là trung điểm của AN và KE // AB. 4) Qua O vẽ đường thẳng vuông góc với OC, đường thẳng này cắt các tia CA và CM theo thứ tự tại P và Q. Xác định vị trí của C để diện tích tam giác CPQ nhỏ nhất.