Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Hai người thợ cùng làm một công việc trong 7 giờ 12 phút thì xong. Nếu người thứ nhất làm trong 5 giờ, người thứ hai làm trong 6 giờ thì cả hai người làm được 3/4 công việc. Hỏi mỗi người làm một mình công việc đó thì mấy giờ xong. + Cho (O;R) và một điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AB, AC tới (O) (B và C là các tiếp điểm). Một đường thẳng d đi qua A cắt (O;R) tại hai điểm D và E (D nằm giữa A và E; tia AE nằm giữa hai tia AB và AO). AO cắt BC tại H. a. Chứng minh: Bốn điểm A, B, O, C cùng thuộc một đường tròn. b. Chứng minh: AB2 = AD.AE = AH.AO. c. Chứng minh: HB là tia phân giác của DHE. + Cho x, y là hai số thực thỏa mãn: (x + y)2 + 7(x + y) + y2 + 10 = 0. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức x + y + 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Hà Đông - Hà Nội
Thứ Tư ngày 31 tháng 03 năm 2021, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa kì 2 môn Toán lớp 9 năm học 2020 – 2021. Đề thi giữa kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút.
Đề thi giữa HK2 Toán 9 năm 2020 - 2021 trường THCS Hoàng Hoa Thám - Hà Nội
Đề thi giữa HK2 Toán 9 năm 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Hai bạn An và Tâm được phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp về ý nghĩa của “Giờ trái đất”. Biết rằng nếu hai bạn cùng làm thì sau 2 giờ 24 phút sẽ xong. Nhưng khi làm chung được 1 giờ thì Tâm có việc bận phải về, còn một mình An làm nốt trong 2 giờ 20 phút nữa mới xong. Hỏi nếu mỗi bạn làm một mình thì sau bao lâu sẽ xong công việc? + Cho các đường thẳng (d): y = -2x + 3; (d’): y = (m – 1)x + 2m – 1 và parabol (P): y = x2. a) Tìm tọa độ giao điểm của (d) và (P). b) Tìm m biết đường thẳng (d’) song song với đường thẳng (d). Khi đó, giả sử (d’) cắt Ox tại A, cắt Oy tại B. Tính diện tích tam giác OAB. c) Tìm m để (d’) cắt (P) tại 2 điểm phân biệt D, E sao cho trung điểm I của DE nằm trên Oy. + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm); đường thẳng d đi qua A và cắt (O) tại C, D (C nằm giữa A và D). Gọi I là trung điểm của CD. a) Chứng minh các điểm A, B, I và O cùng nằm trên một đường tròn. b) Chứng minh AC.AD = AB2. c) Qua B kẻ đường thẳng vuông góc với OA, đường thẳng này cắt (O;R) tại E. Chứng minh AB là tiếp tuyến của (O;R) và góc BEA = 1/2 góc BIE. d) Khi đường thẳng d thay đổi sao cho BDE có ba góc nhọn, gọi H là trực tâm BDE. Tính OA theo R để H chạy trên đường tròn ngoại tiếp ABE.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường THCS Đống Đa - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS Đống Đa, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường THCS Đống Đa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Tổng số học sinh của hai lớp 9A và 9B là 93 học sinh. Trong đợt quyên góp sách và ủng hộ các bạn học sinh vùng lũ, trung bình mỗi học sinh lớp 9A ủng hộ 3 quyển, mỗi học sinh lớp 9B ủng hộ 2 quyển nên cả hai lớp ủng hộ được 234 quyển sách vở. Tính số học sinh mỗi lớp 9A và 9B. + Giải hệ phương trình sau + Cho parabol (P) và đường thẳng (d). a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P).