Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Vinh – Nghệ An : + Một người mua một căn hộ chung cư dành cho người có thu nhập thấp với giá 500 triệu đồng. Người đó trả trước số tiền là 100 triệu đồng, số tiền còn lại người đó thanh toán theo hình thức trả góp với lãi suất tính trên tổng số tiền còn nợ là 0,5% mỗi tháng. Kể từ ngày mua, sau mỗi tháng người đó trả số tiền cố định là 4 triệu đồng. a) Tính số tiền người đó còn nợ sau 3 tháng. b) Với việc trả góp như trên, hỏi sau 1 năm người đó còn nợ bao nhiêu (làm tròn đến hàng nghìn)? + Trong một hộp kín có 6 viên bi đỏ, 4 viên bi xanh, 8 viên bi vàng (có kích thước và hình dạng như nhau chỉ khác màu sắc). Lấy ngẫu nhiên 1 viên bi từ trong hộp. a) Tính xác suất lấy được viên bi mỗi màu. b) Thêm vào hộp một số viên bi màu đỏ, màu xanh và màu vàng sao cho xác suất chọn được một viên bi mỗi màu không đổi. Cần thêm ít nhất bao nhiêu viên bi mỗi màu? + Một con Robot di chuyển trên một mặt phẳng tọa độ, chỉ đi qua các điểm nguyên (điểm có hoành độ và tung độ đều là số nguyên) theo nguyên tắc sau: Từ điểm (x;y) con Robot chỉ có thể di chuyển đến bất kì điểm nào đó trong số các điểm (y;x); (3x;-2y); (-2x;3y); (x + 1; y + 4); (x – 1; y – 4). Ban đầu con Robot đang ở điểm A(2023;2024) hỏi con robot có thể di chuyển đến gốc tọa độ O(0;0) được hay không?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL đầu năm năm học 2017 2018 môn Toán 8 trường THCS Ngọc Liên Hải Dương
Đề KSCL đầu năm năm học 2017 2018 môn Toán 8 trường THCS An Ninh Hà Nam
Đề KSCL mũi nhọn lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nông Cống Thanh Hóa
Nội dung Đề KSCL mũi nhọn lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nông Cống Thanh Hóa Bản PDF - Nội dung bài viết Đề Kiểm Tra Chất Lượng Mũi Nhọn Lớp 8 Toán Năm 2021-2022 Đề Kiểm Tra Chất Lượng Mũi Nhọn Lớp 8 Toán Năm 2021-2022 Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề khảo sát chất lượng mũi nhọn học sinh lớp 8 cấp huyện môn Toán cho năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Nông Cống, tỉnh Thanh Hóa. Trích dẫn đề KSCL mũi nhọn Toán lớp 8 năm 2021-2022 phòng GD&ĐT Nông Cống - Thanh Hóa: 1. Chứng minh rằng: Nếu 2n + 1 và 3n + 1 (với n thuộc tập số tự nhiên) đều là các số chính phương thì n phải chia hết cho 40. 2. Cho O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng chứa cạnh AB, vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. Chứng minh: AB2 = 4AC.BD. Kẻ OM vuông góc với CD tại M. Chứng minh: AC = CM. Từ M kẻ MH vuông góc với AB tại H. Chứng minh BC đi qua trung điểm của đoạn thẳng MH. Tìm vị trí của điểm C trên tia Ax để diện tích tứ giác ABDC nhỏ nhất. 3. Cho x, y, z là các số thực dương thỏa mãn: x + y + z = 1. Hãy tìm giá trị nhỏ nhất của biểu thức M. Mong rằng đề kiểm tra này sẽ giúp các em rèn luyện kiến thức và kỹ năng giải bài toán một cách thành thạo. Chúc các em thành công!
Đề KSCL mũi nhọn lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Nông Cống Thanh Hóa
Nội dung Đề KSCL mũi nhọn lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Nông Cống Thanh Hóa Bản PDF - Nội dung bài viết Đề KSCL mũi nhọn lớp 8 môn Toán năm 2022-2023 Đề KSCL mũi nhọn lớp 8 môn Toán năm 2022-2023 Chào thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến bạn đọc đề khảo sát chất lượng mũi nhọn của học sinh lớp 8 cấp huyện môn Toán năm học 2022-2023 do Phòng Giáo dục và Đào tạo huyện Nông Cống, tỉnh Thanh Hóa tổ chức. Kỳ thi sẽ diễn ra vào ngày 04 tháng 03 năm 2023. Dưới đây là một số câu hỏi trích dẫn từ đề KSCL mũi nhọn Toán lớp 8 năm 2022-2023 của Phòng GD&ĐT Nông Cống - Thanh Hóa: Cho ba số a, b, c đôi một khác nhau, thỏa mãn a3 + b3 + c3 = 3abc và abc khác 0. Tính giá trị của biểu thức: B = 8(a + b)/c + 3(b + c)/a - 2034(c + a)/b. Cho x, y là các số hữu tỉ khác 1 thỏa mãn: (2x - 1)/(x - 1) + (2y - 1)/(y - 1) = 1. Chứng minh M = x^2 + y^2 - xy là bình phương của một số hữu tỉ. Cho O là trung điểm của đoạn thẳng AB có độ dài bằng 2a. Trên cùng một nửa mặt phẳng bờ là AB vẽ hai tia Ax và By cùng vuông góc với AB. ... Đề thi không chỉ giúp học sinh ôn tập kiến thức mà còn giúp họ rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và sáng tạo. Chúc các em học sinh sẽ đạt kết quả tốt trong kỳ thi sắp tới!