Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL giữa học kì 1 Toán 11 năm 2018 2019 trường THPT Bùi Thị Xuân TT Huế

Nguồn: onluyen.vn

Xem

Đề khảo sát chất lượng lần 1 Toán 11 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh
Đề khảo sát chất lượng lần 1 Toán 11 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh mã đề 110 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 110, 232, 354, 476, 598, 610, 792, 874, 956, 138, 210, 392. Trích dẫn đề khảo sát chất lượng lần 1 Toán 11 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng? A. d qua S và song song với BC. B. d qua S và song song với DC. C. d qua S và song song với AB. D. d qua S và song song với BD. + Cho một bảng ô vuông 3 x 3. Điền ngẫu nhiên các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng trên (mỗi ô chỉ điền một số). Gọi A là biến cố “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”. Xác suất của biến cố A bằng? + Cho khai triển nhị thức P(x) = (1 + x)^6. Xét các khẳng định sau: (I) Khai triển P(x) gồm có 7 số hạng. (II) Số hạng thứ 2 của khai triển P(x) là 6x. (III) Hệ số của x^5 trong khai triển P(x) là 5. (IV) Số hạng chính giữa của khai triển P(x) là số hạng thứ 3. Số khẳng định đúng?
Đề khảo sát chất lượng Toán 11 năm 2020 - 2021 trường THPT Yên Mỹ - Hưng Yên
Đề khảo sát chất lượng Toán 11 năm 2020 – 2021 trường THPT Yên Mỹ – Hưng Yên mã đề 291 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 11 năm 2020 – 2021 trường THPT Yên Mỹ – Hưng Yên : + Khẳng định nào sai: A. Phép quay biến đường thẳng thành đường thẳng song song với nó. B. Phép tịnh tiến biến tam giác thành tam giác bằng nó. C. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó. D. Phép quay biến đường tròn thành đường tròn có cùng bán kính. + Cho hình chóp S.ABCD có đáy ABCD không là hình thang. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là: A. Đường thẳng SE với E là giao điểm của AD và BC. B. Đường thẳng đi qua S và song song BC. C. Đường thẳng SI với I là giao điểm của AB và CD. D. Đường thẳng SO với O là giao điểm của AC và BD. + Để lắp đường dây cao thế từ vị trí A đến vị trí B phải tránh một ngọn núi, do đó người ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 10km, rồi nối từ vị trí C đến vị trí B dài 8km. Biết góc tạo bởi 2 đoạn dây AC và CB là 85 độ. Hỏi so với việc nối thẳng từ A đến B phải tốn thêm khoảng bao nhiêu mét dây?
Đề ĐGCB học kỳ 1 Toán 11 năm 2020 - 2021 trường THPT chuyên KHTN - Hà Nội
Thứ Hai ngày 19 tháng 10 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi đánh giá công bằng học kỳ 1 môn Toán 11 năm học 2020 – 2021. Đề ĐGCB học kỳ 1 Toán 11 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề ĐGCB học kỳ 1 Toán 11 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội : + Một nhóm 10 học sinh gồm 4 học sinh lớp A, 3 học sinh lớp B và 3 học sinh lớp C. Chọn ngẫu nhiên 5 học sinh từ nhóm này. Tính xác suất xảy ra tình huống lớp nào cũng có học sinh được chọn và có ít nhất 2 học sinh lớp A. + Cho cấp số cộng (un) với công sai là số dương. Biết rằng u1, u2, u6 lập thành một cấp số nhân và tổng của chúng là 21. Hãy tính tổng 20 số hạng đầu tiên của cấp số cộng (un). + Cho một bảng ô vuông kích thước 4 x 4, gồm 16 ô vuông con. Ta điền ngẫu nhiên vào mỗi ô vuông con một trong hai số 1 hoặc -1. Tính xác suất xảy ra tình huống tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0.
Đề sát hạch Toán 11 lần 3 năm 2019 - 2020 trường THPT Đoàn Thượng - Hải Dương
Đề sát hạch Toán 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho. [ads] + Cho hàm số y = (x + 2)/(2x + 3) có đồ thị là đường cong (C). Đường thẳng có phương trình y = ax + b là tiếp tuyến của (C) cắt trục hoành tại A, cắt trục tung tại B sao cho tam giác OAB là tam giác vuông cân tại O, với O là gốc tọa độ. Khi đó tổng S = a + b bằng bao nhiêu? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng?