Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 sở GDĐT Hưng Yên

Thứ Sáu ngày 09 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lớp 9 năm học 2020 – 2021. Đề khảo sát chất lượng Toán 9 năm 2020 – 2021 sở GD&ĐT Hưng Yên mã đề 105 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 tháng 10 năm học 2021 - 2022 trường THCS Nam Từ Liêm - Hà Nội
Đề khảo sát Toán 9 tháng 10 năm học 2021 – 2022 trường THCS Nam Từ Liêm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 9 tháng 10 năm học 2021 – 2022 trường THCS Nam Từ Liêm – Hà Nội : + Giải các phương trình sau. + Cho các biểu thức: a) Tính giá trị của biểu thức A khi x = 64; b) Cho P = B:A. Rút gọn biểu thức P; c) Tìm các số nguyên x để P < 0. + Cho ABC vuông tại A, đường cao AH, đường trung tuyến AM. 1) Biết BC = 10cm, BH = 3,6cm. Tính độ dài đoạn thẳng AB, AH và số đo góc HAM (làm tròn số đo góc đến phút) 2) Từ B kẻ BE AM (E thuộc AM), BE cắt cắt AH tại D. Chứng minh rằng DM // AC và HD = DM.sinC. 3) Lấy điểm K trên cạnh BE sao cho AKM = 90°. Chứng minh AE.ME = BE.DE và S2_AMK = S_AMB . S_AMD.
Đề kiểm tra Toán 9 tháng 10 năm 2021 trường THCS Archimedes Academy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra Toán 9 tháng 10 năm 2021 trường THCS Archimedes Academy – Hà Nội; đề thi được biên soạn theo hình thức đề 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút.
Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCSTHPT Newton - Hà Nội
Đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS&THPT Newton – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS&THPT Newton – Hà Nội : + Cho hai biểu thức A và B 1) Tính giá trị biểu thức A khi x = 25. 2) Chứng minh B 3) Tìm x để B < 3/4. 4) Cho P = A : B. Với giá trị nguyên nào của x thì P đạt giá trị nhỏ nhất, xác định giá trị nhỏ nhất đó. + Đài kiểm soát không lưu Nội Bài cao 95m. Ở một thời điểm nào đó vào ban ngày, mặt trời chiếu tạo bóng của Đài kiểm soát dài 200m trên mặt đất. Hỏi lúc đó góc tạo bởi tia sáng mặt trời và mặt đất là bao nhiêu? (Hình minh họa như hình bên). (Kết quả làm tròn đến độ). + Cho tam giác ABC vuông tại A, đường cao AH. 1) Giả sử BH = 4cm; AB = 6cm. Xác định tâm và bán kính của đường tròn ngoại tiếp ABC. 2) Qua B kẻ đường thẳng vuông góc với AB, cắt AH tại D. Chứng minh: 3) Lấy một điểm O bất kì trong tam giác ABC, gọi M, N, P lần lượt là hình chiếu của điểm O trên cạnh BC, CA và AB. Hãy xác định vị trí điểm O để đạt giá trị nhỏ nhất.
Đề khảo sát Toán 9 tháng 9 năm 2021 trường THCS Lê Ngọc Hân - Hà Nội
Đề khảo sát Toán 9 tháng 9 năm 2021 trường THCS Lê Ngọc Hân – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 30 tháng 09 năm 2021, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2021 trường THCS Lê Ngọc Hân – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một người đi xe máy từ nhà đến công ty với vận tốc 40km/h. Người đó ở lại làm việc trong 3 giờ rồi đi xe máy quay về nhà với vận tốc 30km/h, tổng cộng hết 6 giờ 30 phút kể cả thời gian làm việc. Tính quãng đường từ nhà đến công ty của người đó. + Bài toán thực tế: Để đo chiều cao của một ngọn tháp, không thể trèo lên đỉnh. Người ta dùng thước dài, thước đo góc và đèn laser thực hiện thao tác đo thu được kết quả như hình vẽ. Hãy tính chiều cao của tháp (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho ΔABC có đường cao AH. Kẻ HD vuông góc AB tại D. Biết AH = 8cm; AB = 10cm. a) Tính HB, HD. b) Biết góc ACB = 30 độ. Giải ΔAHC. c) Kẻ HE vuông góc với AC. Chứng minh rằng ΔAED đồng dạng với ΔABC. d) Tính diện tích tứ giác BDEC (kết quả làm tròn đến chữ số thập phân thứ 3).