Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm thể tích khối chóp - Trần Đình Cư

Tài liệu bài tập trắc nghiệm thể tích khối chóp do thầy Trần Đình Cư biên soạn và gửi tặng các em học sinh nhân dịp Giáng sinh 2016. Tài liệu được phân thành 5 dạng: Dạng 1. Khối chóp có cạnh bên vuông góc đáy Một số chú ý khi giải toán: + Một hình chóp có một cạnh bên vuông góc với đáy thì cạnh bên đó chính là đường cao. + Một hình chóp có hai mặt bên kề nhau cùng vuông góc với đáy thì cạnh bên là giao tuyến của hai mặt đó vuông góc với đáy. Dạng 2. Khối chóp có hình chiếu của đỉnh lên mặt phẳng đáy Dạng 3. Khối chóp có mặt bên vuông góc với đáy  Để xác định đường cao hình chóp ta vận dụng định lí sau: Nếu (α) ⊥ (β), (α) ∩ (β) = d, a ⊂ (α), a ⊥ d thi a ⊥ (β). Dạng 4. Khối chóp đều 1. Định nghĩa: Một hình chóp được gọi là hình chóp đều nếu đáy của nó là một đa giác đều và các cạnh bên bằng nhau 2. Kết quả: Trong hình chóp đều: + Đường cao hình chóp qua tâm của đa giác đáy. + Các cạnh bên tạo với đáy các góc bằng nhau. + Các mặt bên tạo với đáy các góc bằng nhau. [ads] Chú ý : + Đề bài cho hình chóp tam giác đều (tứ giác đều) ta hiểu là hình chóp đều. + Hình chóp tam giác đều khác với hình chóp có đáy là đa giác đều vì hình chóp tam giác đều thì bản thân nó có đáy là tam giác đều và các cạnh bên bằng nhau, nói một cách khác, hình chóp tam giác đều thì suy ra hình chóp có đáy là tam giác đều nhưng điều ngược lại là không đúng. + Hình chóp tứ giác đều là hình chóp đều có đáy là hình vuông. Dạng 5. Tỉ lệ thể tích Việc tính thể tích của một khối chóp thường học sinh giải bị nhiều sai sót. Tuy nhiên trong các đề thi lại yêu cầu học sinh tính thể tích của một khối chóp “nhỏ” của khối chóp đã cho. Khi đó học sinh có thể thực hiện các cách sau: Cách 1: + Xác định đa giác đáy. + Xác định đường cao ( phải chứng minh đường cao vuông gới với mặt phẳng đáy). + Tính thể tích khối chóp theo công thức. Cách 2 + Xác định đa giác đáy. + Tính các tỷ số độ dài của đường cao (nếu cùng đa giác đáy) hoặc diện tích đáy (nếu cùng đường cao) của khối chóp “nhỏ” và khối chóp đã cho và kết luận thể tích khối cần tìm bằng k lần thể tích khối đã cho. Cách 3: Dùng tỷ số thể tích (Chỉ áp dụng cho khối chóp (tứ diện)). Hai khối chóp S.MNK và S.ABC có chung đỉnh S và góc ở đỉnh S. Ta có : VS.MNK/VS.ABC = SM/SA.SN/SB.SK/SC

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Phùng Hoàng Em
Tài liệu gồm có 31 trang được biên soạn bởi thầy giáo Phùng Hoàng Em, tuyển chọn và phân dạng các bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng, giúp học sinh rèn luyện trong quá trình học tập chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng – Phùng Hoàng Em: 1. NGUYÊN HÀM VÀ PHƯƠNG PHÁP TÍNH NGUYÊN HÀM. A SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC + Dạng 1. Áp dụng bảng công thức nguyên hàm. + Dạng 2. Tách hàm dạng tích thành tổng. + Dạng 3. Tách hàm dạng phân thức thành tổng. B SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ + Dạng 4. Đổi biến dạng hàm lũy thừa. + Dạng 5. Đổi biến dạng hàm phân thức. + Dạng 6. Đổi biến dạng hàm vô tỉ. + Dạng 7. Đổi biến dạng hàm lượng giác. + Dạng 8. Đổi biến dạng hàm mũ, hàm lô-ga-rit. + Dạng 9. Đổi biến dạng “hàm ẩn”. C SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN + Dạng 10. Nguyên hàm từng phần với ”u = đa thức”. + Dạng 11. Nguyên hàm từng phần với ”u = lôgarit”. + Dạng 12. Nguyên hàm kết hợp đổi biến số và từng phần. + Dạng 13. Nguyên hàm từng phần dạng “lặp”. + Dạng 14. Nguyên hàm từng phần dạng “hàm ẩn”. [ads] 2. TÍCH PHÂN VÀ PHƯƠNG PHÁP TÍNH TÍCH PHÂN A TÍCH PHÂN DÙNG ĐỊNH NGHĨA + Dạng 1. Sử dụng định nghĩa, tính chất tích phân. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản. B TÍCH PHÂN ĐỔI BIẾN SỐ + Dạng 4. Đổi biến loại t = u(x). + Dạng 5. Đổi biến loại x = ϕ(t) (Lượng giác hóa). + Dạng 6. Đổi biến số dạng hàm ẩn. C TÍCH PHÂN TỪNG PHẦN + Dạng 7. Tích phân từng phần với “u = đa thức”. + Dạng 8. Tích phân từng phần với “u = logarit”. + Dạng 9. Tích phân hàm ẩn. 3. ỨNG DỤNG TÍCH PHÂN. A TÍNH DIỆN TÍCH HÌNH PHẲNG + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x). + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số. + Dạng 3. Toạ độ hoá một số “mô hình” hình phẳng thực tế. B TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY + Dạng 4. Tính thể tích vật thể khi biết diện tích mặt cắt vuông góc với Ox. + Dạng 5. Tính thể tích của khối tròn xoay khi cho hình phẳng quay quanh trục Ox. 24 + Dạng 6. Bài tập tổng hợp. C MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG
Bài tập trắc nghiệm ứng dụng của tích phân có đáp án và lời giải
Tài liệu gồm 229 trang tuyển chọn và phân dạng các bài tập trắc nghiệm có đáp án và lời giải chi tiết các chủ đề: ứng dụng của tích phân để tính diện tích, ứng dụng của tích phân để tính thể tích, ứng dụng của tích phân để giải quyết các bài toán thực tế và bài toán liên môn; giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm ứng dụng của tích phân có đáp án và lời giải: Vấn đề 1 . Ứng dụng của tích phân để tính diện tích. + Dạng toán 1: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b (a < b). + Dạng toán 2: Diện tích hình phẳng giới hạn bởi các đường y = f(x), y = g(x), x = a, x = b. + Dạng toán 3: Diện tích hình phẳng giới hạn bởi các đường y = f(x), y = g(x). + Dạng toán 4: Tính diện tích hình phẳng giới hạn bởi nhiều đường cong (nhiều hơn hai đường cong). + Dạng toán 5: Diện tích hình phẳng giới hạn bởi các đường x = g(y), x = h(y), y = c, y = d. + Dạng toán 6: Ứng dụng diện tích có đồ thị hàm đạo hàm. + Dạng toán 7: Bài toán thực tế sử dụng diện tích hình phẳng. [ads] Vấn đề 2 . Ứng dụng của tích phân để tính thể tích. + Dạng toán 1: Tính thể tích vật thể tròn xoay sinh bởi miền (D) giới hạn bởi y = f(x), y = 0 và x = a, x = b khi quay quanh trục Ox. + Dạng toán 2: Tính thể tích vật thể tròn xoay khi cho hình phẳng giới hạn bởi: y = f(x) và y = g(x) quay quanh trục Ox. + Dạng toán 3: Tính thể tích vật thể tròn xoay khi cho hình phẳng giới hạn bởi: x = g(y), x = h(y) quay xung quanh trục Oy. + Dạng toán 4: Thể tích tính theo mặt cắt S(x). + Dạng toán 5: Bài toán thực tế và ứng dụng thể tích. Vấn đề 3 . Ứng dụng của tích phân để giải quyết các bài toán thực tế và bài toán liên môn.
Bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải
Bài toán tích phân hàm ẩn là dạng toán khó, vận dụng cao (VDC) về tích phân thường gặp trong các đề thi trắc nghiệm môn Toán hiện nay. Tài liệu gồm 124 trang tuyển chọn và phân dạng các bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải: Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Áp dụng định nghĩa và tính chất của nguyên hàm (Trang 1). + Dạng toán 2. Áp dụng định nghĩa, tính chất, giải hệ tích phân (Trang 3). + Dạng toán 3. Phương pháp đổi biến số (Trang 51). + Dạng toán 4: Phương pháp tích phân từng phần (Trang 102). Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Áp dụng định nghĩa và tính chất của nguyên hàm (Trang 14). + Dạng toán 2. Áp dụng định nghĩa, tính chất, giải hệ tích phân (Trang 24). + Dạng toán 3. Phương pháp đổi biến số (Trang 63). + Dạng toán 4: Phương pháp tích phân từng phần (Trang 107). [ads] Trích dẫn tài liệu bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải: + Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [1;4], đồng biến trên đoạn [1;4] và thỏa mãn đẳng thức x + 2xf(x) = [f'(x)]^2 với mọi x thuộc [1;4]. Biết rằng f(1) = 3/2, tính tích phân I của hàm f(x) khi x chạy từ 1 đến 4. + Cho hàm số f(x) liên tục, không âm trên đoạn [0;pi/2] thỏa mãn f(0) = √3 và f(x).f'(x) = cosx.√(1 + f(x)^2) với mọi x thuộc [0;pi/2]. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số f(x) trên đoạn [pi/6;pi/2]. + Cho hàm số f(x) liên tục trên R và f(x) khác 0 với mọi x thuộc R. f'(x) = (2x + 1).f(x)^2 và f(1) = -0,5. Biết rằng tổng f(1) + f(2) + f(3) + … + f(2017) = a/b (a thuộc Z, b thuộc N) với a/b tối giản. Mệnh đề nào dưới đây đúng?
Bài tập trắc nghiệm tích phân có đáp án và lời giải
Tài liệu gồm 163 trang tuyển chọn và phân dạng các bài tập trắc nghiệm tích phân có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm tích phân có đáp án và lời giải: Vấn đề 1 . Tích phân. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 1). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 9). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 14). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 15). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 18). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 20). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 35). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 48). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 50). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 58). Vấn đề 2 . Tích phân đổi biến số. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 62). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 76). [ads] Phần 2 . Lời giải chi tiết. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 79). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 123). Vấn đề 3 . Tích phân từng phần. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tích phân P(x).e^x (Trang 131). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 133). + Dạng toán 3. Tích phân P(x).lnx (Trang 134). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tích phân P(x).e^x (Trang 138). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 148). + Dạng toán 3. Tích phân P(x).lnx (Trang 151).