Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 trường THCS Ái Mộ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Ái Mộ, quận Long Biên, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 trường THCS Ái Mộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để ủng hộ các gia đình gặp khó khăn tại một số địa phương do ảnh hưởng của dịch Covid-19, một số tổ chức thiện nguyện đã dự định chở 180 tấn hàng chia đều bằng một số xe cùng loại. Lúc khởi hành, có 2 xe bị hỏng nên mỗi xe phải chở thêm 3 tấn so với dự định. Hỏi ban đầu có bao nhiêu xe tham gia chở hàng? + Bán kính Trái Đất là 6370 km. Biết rằng 29% diện tích bề mặt trái đất không bị bao phủ bởi nước gồm núi, sa mạc, cao nguyên, đồng bằng và các địa hình khác. Tính diện tích bề mặt Trái Đất bị bao phủ bởi nước (làm tròn đến hai chữ số thập phân, lấy π = 3,14). + Cho nửa đường tròn tâm O đường kính AB R 2 và C D là hai điểm di động trên nửa đường tròn sao cho C thuộc cung AD và COD = 60 (C AD B). Gọi M là giao điểm của tia AC và BD, N là giao điểm của AD và BC. Gọi H và I lần lượt là trung điểm của CD và MN. a) Chứng minh tứ giác CMDN nội tiếp. b) Kẻ AP CD BQ CD P Q CD. Chứng minh CP DQ và AP BQ R 3. c) Chứng minh rằng ba điểm H I và O thẳng hàng. Tìm giá trị lớn nhất của diện tích tam giác MCD theo R khi C D di chuyển trên nửa đường tròn thỏa mãn điều kiện đề bài.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2022 - 2023 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Ba ngày 11 tháng 04 năm 2023. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2022 – 2023 phòng GD&ĐT Hà Đông – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe tăng vận tốc thêm 10 km/h thì đến B sớm hơn dự định 3 giờ, còn nếu xe giảm vận tốc 10 km/h thì đến B chậm mất 5 giờ. Tính vận tốc dự định và thời gian dự định của ô tô đi hết quãng đường AB? + Một thùng rác inox hình trụ có chiều cao là 60 cm, chu vi đường tròn đáy của thùng rác là 125,6 cm. Tính thể tích của thùng rác? (lấy pi = 3,14). + Trong mặt phẳng toạ độ Oxy cho đường thẳng (d): y = mx – m + 1 và Parabol (P): y = x2 (với m là tham số và m khác 1). a) Tìm m để đường thẳng (d) và Parabol (P) cắt nhau tại hai điểm phân biệt. b) Gọi giao điểm của (d) và (P) là A(x1;y1) và B(x2;y2). Gọi H và K lần lượt là hình chiếu của A và B trên trục Ox. Tìm m để AH + BK = 2.
Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Sóc Sơn, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá (mã đề B); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình: y n xn 1 2 (với n là tham số). Tìm n để đường thẳng (d) và đường thẳng y x 2 cắt nhau tại một điểm nằm trên trục tung. + Cho phương trình: x2 – 4x + m – 2 = 0. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: x1(2×1 + x2) – 8 = 4m + (x2 – 4)2. + Cho tam giác MNK nhọn (MN < MK) nội tiếp đường tròn (O; R). Các đường cao NE, KF của tam giác cắt nhau tại H (E thuộc MK, F thuộc MN). a) Chứng minh: Bốn điểm N, K, E, F cùng thuộc một đường tròn. b) Kẻ đường kính MA của đường tròn (O). Chứng minh: MA vuông góc với EF và NHKA là hình bình hành. c) Giả sử: NK cố định và M di chuyển trên cung lớn NK sao cho tam giác MNK luôn là tam giác nhọn. Tìm vị trí điểm M để diện tích tam giác EMH lớn nhất. Tính giá trị lớn nhất đó theo R khi NK R 3.
Đề khảo sát Toán 9 lần 7 năm 2022 - 2023 trường Trần Quốc Toản - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 7 năm học 2022 – 2023 trường TH & THCS Trần Quốc Toản, tỉnh Bắc Ninh; đề thi mã đề 137, gồm 05 trang, hình thức 40% trắc nghiệm (40 câu) + 60% tự luận (04 câu), thời gian làm bài 120 phút. Trích dẫn Đề khảo sát Toán 9 lần 7 năm 2022 – 2023 trường Trần Quốc Toản – Bắc Ninh : + Cho các đường thẳng (d1): y = 2x – 2; (d2): y = -4/3x – 2 và đường thẳng (d3) có hệ số góc bằng 1/3 và đi qua điểm M(3;4). Ba đường thẳng trên đôi một cắt nhau tại A, B, C. Biết rằng mỗi đơn vị trên trục tọa độ có độ dài 1cm. Bán kính r của đường tròn nội tiếp ABC (làm tròn đến chữ số thập phân thứ hai) bằng? + Cho đường tròn (O;R). Khẳng định nào sau đây là sai? A. Đường kính vuông góc với dây thì đi qua trung điểm của dây ấy. B. Dây cung lớn nhất có độ dài bằng 2R. C. Điểm A nằm trên (O;R) khi và chỉ khi OA = R. D. Đường kính đi qua trung điểm của một dây thì vuông góc với dây ấy. + Lớp 9A dự định trồng 420 cây xanh. Đến ngày thực hiện có 7 bạn không tham gia do được triệu tập học bồi dưỡng đội tuyển học sinh giỏi của nhà trường nên mỗi bạn còn lại phải trồng thêm 3 cây mới đảm bảo kế hoạch đặt ra. Hỏi lớp 9A có bao nhiêu học sinh.