Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 300 bài toán bất đẳng thức chọn lọc có lời giải chi tiết

Tài liệu gồm 186 trang, được biên soạn bởi tác giả Trần Minh Quang, tuyển tập 300 bài toán bất đẳng thức chọn lọc có đáp án và lời giải chi tiết. Một số bất đẳng thức trong các đề thi học sinh giỏi, tuyển sinh ĐH – THPT Quốc gia và lớp 10 chuyên Toán. Trong các kì thi học sinh giỏi môn Toán THCS – THPT và các kì thi tuyển sinh lớp 10 chuyên, nội dung về bất đẳng thức và giá trị lớn nhất, nhỏ nhất xuất hiện một cách đều đặn trong các đề thi với các bài toán ngày càng khó hơn. Trong chủ đề này, mình đã tuyển chọn và giới thiệu một số bài toán về bất đẳng thức và giá trị lớn nhất, nhỏ nhất được trích trong các đề thi học sinh giỏi môn Toán cấp tỉnh và các đề thi chuyên Toán các năm gần đây.

Nguồn: toanmath.com

Đọc Sách

Cân bằng hệ số chứng minh BĐT bằng phương pháp hàm số - Tạ Ngọc Thiện
Tài liệu gồm 23 trang trình bày phương pháp cân bằng hệ số trong chứng minh bất đẳng thức (BĐT) bằng phương pháp hàm số do thầy Tạ Ngọc Thiện (Trường THPT Kinh Môn II) biên soạn. Thông qua một số bài toán dạng tổng quát, tác giả sẽ áp dụng vào giải các bài toán cụ thể một cách nhanh chóng.
Chuyên đề bất đẳng thức - Ngô Hoàng Toàn
Bài viết này, tác giả đã chọn lọc những bài toán bất đẳng thức trong các kì thi thử đại học từ các trường THPT, các diễn đàn online và các trung tâm dạy thêm chất lượng để biên soạn lại thành một chuyên đề bất đẳng thức dành cho những người đam mê bất đẳng thức nói chung và các bạn ôn thi đại học nói riêng. Đồng thời, đây cũng là món quà nhỏ, xin được dành tặng cho diễn đàn k2pi như là một hồi ức đẹp sau hơn một năm dài gắn bó cùng các anh, các chị, dù không gặp nhau nhưng chúng ta luôn có sự gắn kết vô hình lại, bởi lẽ chúng ta đã lỡ yêu toán mất rồi! [ads] Mục lục Một số bất đẳng thức cơ bản  1. Bất đẳng thức AM – GM 2. Bất đẳng thức Cauchy – Schwarz 3. Bất đẳng thức Minkowski Bất đẳng thức qua các kì thi đại học 2007-2013 Tuyển tập bất đẳng thức 1. Bất đẳng thức trong kì thi thử các trường 2. Bất đẳng thức trong đề thi thử các diễn đàn 3. Bất đẳng thức trong đề thi thử các trung tâm 4. Bất đẳng thức trong Thử sức trước kì thi THTT Bất đẳng thức luyện thi 2014
Chuyên đề bất đẳng thức - Lê Xuân Đại
Bất đẳng thức (BĐT) là một trong những dạng toán thường có trong các đề thi ĐH – CĐ. Các thí sinh của chúng ta đều rất sợ và lúng túng khi gặp phải bài toán chứng minh bất đẳng thức hoặc tìm giá trị lớn nhất, nhỏ nhất. Đơn giản là do các bài toán về bất đẳng thức thường là bài toán khó trong đề thi, nhằm phân loại và chọn được các học sinh khá giỏi. Thường thì các sĩ tử không biết bắt đầu từ đâu để giải quyết các bài toán về bất đẳng thức. Chuyên đề này muốn hệ thống cho các bạn các phương pháp cơ bản và một số dạng bài tập về bất đẳng thức. Hy vọng sẽ giúp các em học sinh lớp 12 đạt kết quả cao trong kì thi ĐH – CĐ sắp tới. Đọc xong chuyên đề này tôi tin các bạn sẽ không còn cảm giác sợ bất đẳng thức nữa, khi chúng ta hết đi sự sợ hãi và ngại ngần thì chúng ta sẽ đam mê và dành tình yêu cho nó, dành tình yêu và sự đam mê cho toán học nói chung và bất đẳng thức nói riêng là điều rất cần thiết của một người làm toán sơ cấp chân chính và sự lãng mạn của toán học cũng bắt nguồn từ đó. [ads] Những lời khuyên bổ ích khi học về bất đẳng thức: 1. Nắm chắc các tính chất cơ bản của bất đẳng thức. 2. Nắm vững các phương pháp cơ bản chứng minh bất đẳng thức như: phương pháp biến đổi tương đương; phương pháp sử dụng bất đẳng thức Côsi; phương pháp sử dụng đạo hàm. 3. Đặc biệt chú trọng vào ôn tập các kỹ thuật sử dụng bất đẳng thức Côsi, luôn biết đặt và trả lời các câu hỏi như: khi nào áp dụng; điều kiện cho các biến là gì; dấu bằng xảy ra khi nào; nếu áp dụng thế thì có xảy ra dấu bằng không; tại sao lại thêm bớt như vậy. 4. Luôn bắt đầu với các bất đẳng thức cơ bản (điều này vô cùng quan trọng); học thuộc một số bất đẳng thức cơ bản có nhiều áp dụng nhưng phải chú ý điều kiện áp dụng được.
Chinh phục bất đẳng thức bằng phương pháp hệ số bất định và phương pháp tiếp tuyến - Nguyễn Tiến Chinh
Tài liệu chinh phục bất đẳng thức trong kì thi Quốc gia của thầy Nguyễn Tiến Chinh trình bày 2 phương pháp chứng minh bất đẳng thức thường dùng: 1. Kỹ thuật đánh giá từng biến bằng hệ số bất định 2. Kỹ thuật chứng minh bất đẳng thức – tìm min – max bằng phương pháp tiếp tuyến Mỗi phương pháp đều trình bày cơ sở lí thuyết và các ví dụ mẫu có phần giải chi tiết. Các bài giải có sự vận dụng máy tính Casio để định hướng và tăng tốc độ giải bài. Tài liệu gồm 30 trang. [ads]