Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm chuyên đề số phức - Lương Văn Huy

Tài liệu gồm 25 trang tóm tắt lý thuyết, công thức tính toán số phức và 142 bài tập trắc nghiệm chuyên đề số phức chọn lọc. Nội dung tài liệu: A. ĐỊNH NGHĨA VÀ CÁC PHÉP TOÁN SỐ PHỨC 1. Khái niệm số phức Là biểu thức có dạng a + bi, trong đó a, b là những số thực và số i thoả i^2 = –1 Kí hiệu là z = a + bi với a là phần thực, b là phần ảo, i là đơn vị ảo Tập hợp các số phức kí hiệu là C = {a + bi / a, b ∈ R và i^2 = –1}. Ta có R ⊂ C Số phức có phần ảo bằng 0 là một số thực: z = a + 0.i = a ∈ R ⊂ C Số phức có phần thực bằng 0 là một số ảo: z = 0.a + bi = bi. Đặc biệt i = 0 + 1.i Số 0 = 0 + 0.i vừa là số thực vừa là số ảo 2. Số phức bằng nhau Cho hai số phức z = a + bi và z’ = a’ + b’i . Ta có z = z ⇔ a = a’ và b = b’ 3. Biểu diễn hình học của số phức Mỗi số phức z = a + bi được xác định bởi cặp số thực (a; b) Trên mặt phẳng Oxy, mỗi điểm M(a; b) được biểu diễn bởi một số phức và ngược lại Mặt phẳng Oxy biểu diễn số phức được gọi là mặt phẳng phức. Gốc tọa độ O biểu diễn số 0, trục hoành Ox biểu diễn số thực, trục tung Oy biểu diễn số ảo [ads] 4. Môđun của số phức Số phức z = a + bi được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Độ dài của véctơ OM được gọi là môđun của số phức z 5. Số phức liên hợp Cho số phức z = a + bi, số phức liên hợp của z là a – bi 6. Cộng, trừ số phức Số đối của số phức z = a + bi là –z = –a – bi Cho z = a + bi và z’ = a’ + b’i. Ta có z ± z’ = (a ± a’) + (b ± b’)i Phép cộng số phức có các tính chất như phép cộng số thực 7. Phép nhân số phức Cho hai số phức z = a + bi và z’ = a’ + b’i. Nhân hai số phức như nhân hai đa thức rồi thay i^2 = –1 và rút gọn, ta được: z.z’ = a.a’ – b.b’ + (a.b’ + a’.b)i Phép nhân số phức có các tính chất như phép nhân số thực 8. Phép chia số phức 9. Lũy thừa của đơn vị ảo B. CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI 1. Căn bậc hai của số phức Cho số phức w, mỗi số phức z = a + bi thoả z^2 = w được gọi là căn bậc hai của w Mỗi số phức đều có hai căn bậc hai đối nhau (Tổng quát: Căn bậc n của số phức luôn có n giá trị) 2. Phương trình bậc hai Phương trình bậc hai với hệ số a, b, c là số thực Phương trình bậc hai với hệ số phức C. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC 1. Số phức dưới dạng lượng giác a. Acgumen của số phức z ≠ 0 Cho số phức z = a + bi ≠ 0 được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Số đo φ = (Ox, OM) (rađian) được gọi là một acgumen của z Mọi acgumen của z sai khác nhau là k2p tức là có dạng φ + k2p (k ∈ Z) (z và nz sai khác nhau k2p với n là một số thực khác 0) b. Dạng lượng giác của số phức z = a + bi Dạng lượng giác của số phức z ≠ 0 là z = r(cosφ + isinφ) với φ là một acgumen của z c. Nhân, chia số phức dưới dạng lượng giác 2. Công thức Moa–vrơ (Moivre) và ứng dụng D. BÀI TẬP TRẮC NGHIỆM SỐ PHỨC

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập khối đa diện và thể tích khối đa diện - Phùng Hoàng Em
Tài liệu gồm 45 trang, được biên soạn bởi thầy giáo Phùng Hoàng Em, tuyển tập các dạng bài tập khối đa diện và thể tích khối đa diện, giúp học sinh lớp 12 rèn luyện khi học chương trình Hình học 12 chương 1. Mục lục : Chương 1 . KHỐI ĐA DIỆN 1. Bài 1. KHÁI NIỆM VỀ KHỐI ĐA DIỆN 1. A KIẾN THỨC CẦN NHỚ 1. B BÀI TẬP TRẮC NGHIỆM 1. Dạng 1. Nhận biết hình đa diện 1. Dạng 2. Đếm số cạnh, số mặt của một hình đa diện 2. Dạng 3. Phân chia, lắp ghép khối đa diện 3. Bài 2. KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU 5. A KIẾN THỨC CẦN NHỚ 5. B BÀI TẬP TRẮC NGHIỆM 5. Dạng 1. Nhận biết khối đa diện lồi, khối đa diện đều 5. Dạng 2. Số mặt phẳng đối xứng của hình đa diện 7. Bài 3. THỂ TÍCH KHỐI CHÓP 8. A LÝ THUYẾT CẦN NHỚ 8. B MỘT SỐ VÍ DỤ MINH HỌA 10. Dạng 1. Khối chóp có cạnh bên vuông góc với đáy 10. Dạng 2. Khối chóp có mặt phẳng chứa đỉnh vuông góc với đáy 11. Dạng 3. Khối chóp có hai mặt phẳng chứa đỉnh cùng vuông góc với đáy 11. Dạng 4. Khối chóp đều 12. Dạng 5. Khối chóp biết hình chiếu của đỉnh xuống mặt đáy 14. C BÀI TẬP TRẮC NGHIỆM 15. Bài 4. THỂ TÍCH KHỐI LĂNG TRỤ 19. A LÝ THUYẾT CẦN NHỚ 19. B MỘT SỐ VÍ VỤ MINH HỌA 19. Dạng 1. Khối lăng trụ đứng tam giác 19. Dạng 2. Khối lăng trụ đứng tứ giác 21. Dạng 3. Khối lăng trụ xiên 23. C BÀI TẬP TRẮC NGHIỆM 24. Bài 5. PHÂN CHIA KHỐI ĐA DIỆN, TỈ SỐ THỂ TÍCH 29. A LÝ THUYẾT CẦN NHỚ 29. B MỘT SỐ VÍ DỤ MINH HỌA 30. Dạng 1. Tỉ số thể tích trong khối chóp 30. Dạng 2. Tỉ số thể tích trong khối lăng trụ 32. C BÀI TẬP TRẮC NGHIỆM 34. Bài 6. MỘT SỐ ĐỀ ÔN TẬP 36.
Các dạng bài tập hình học không gian
Tài liệu gồm 34 trang, được biên soạn bởi quý thầy, cô giáo giảng dạy bộ môn Toán học tại trường THPT Marie Curie, quận 3, thành phố Hồ Chí Minh, phân dạng và tuyển chọn các bài toán trắc nghiệm + tự luận chuyên đề hình học không gian, giúp học sinh lớp 12 tự học chương trình Hình học 12 chương 1 và chương 2. VẤN ĐỀ 1. GÓC. 1. Góc giữa hai đường thẳng. 2. Góc giữa đường thẳng và mặt phẳng. 3. Góc giữa hai mặt phẳng. VẤN ĐỀ 2. KHOẢNG CÁCH. 1. Khoảng cách từ một điểm đến mặt phẳng. 2. Khoảng cách giữa hai đường thẳng chéo nhau. VẤN ĐỀ 3. THỂ TÍCH KHỐI CHÓP. 1. Thể tích khối chóp. 2. Tỉ số thể tích. 3. Một số hình chóp đặc biệt. 4. Một số tính chất cần nhớ khi vẽ hình. VẤN ĐỀ 4. THỂ TÍCH LĂNG TRỤ. 1. Thể tích khối lăng trụ. 2. Một số hình lăng trụ đặc biệt. VẤN ĐỀ 5. KHỐI NÓN VÀ HÌNH NÓN. 1. Thể tích khối nón. 2. Diện tích xung quanh của hình nón. 3. Diện tích toàn phần của hình nón. VẤN ĐỀ 6. KHỐI TRỤ VÀ HÌNH TRỤ. 1. Thể tích khối trụ. 2. Diện tích xung quanh của hình trụ. 3. Diện tích toàn phần của hình trụ. VẤN ĐỀ 7. KHỐI CẦU VÀ MẶT CẦU. 1. Thể tích khối cầu. 2. Diện tích mặt cầu.
Bài tập khối đa diện và thể tích khối đa diện - Diệp Tuân
Tài liệu gồm 310 trang, được biên soạn bởi thầy giáo Diệp Tuân, tổng hợp lý thuyết, phân dạng và tuyển chọn bài tập trắc nghiệm – tự luận chuyên đề khối đa diện và thể tích khối đa diện, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1. BÀI 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN. Dạng 1. Nhận biết hình(khối) đa diện lồi. Dạng 2. Đếm số đỉnh, cạnh, mặt hình (khối) đa diện lồi. Dạng 3. Cắt, ghép hình (khối) đa diện lồi. Dạng 4. Số mặt phẳng hình (khối) đa diện lồi. Dạng 5. Tính chất của đỉnh, cạnh, mặt (khối) đa diện lồi. BÀI 2 . THỂ TÍCH KHỐI CHÓP – KHỐI LĂNG TRỤ. BÀI 3 . THỂ TÍCH KHỐI CHÓP KHÓP ĐỀU – KHỐI LĂNG TRỤ ĐỀU. BÀI 4 . MỘT SỐ DẠNG TOÁN THỂ TÍCH HÌNH CHÓP. Dạng 1. Khối chóp có cạnh bên vuông góc với đáy hoặc hình chiếu vuông góc. Dạng 2. Khối chóp có các cạnh bên bằng nhau (hay cách đều một đỉnh). Dạng 3. Khối chóp mặt bên vuông góc với đáy. Dạng 4. Khối chóp hai mặt bên cắt nhau cùng vuông góc với đáy. Dạng 5. Khối lăng trụ đứng. Dạng 6. Khối lăng trụ đều – khối hình lập phương – khối hình chữ nhật. Dạng 7. Khối lăng trụ xiên. BÀI 5 . TỈ SỐ THỂ TÍCH VÀ PHƯƠNG PHÁP GHÉP KHỐI. Dạng 1. Tỉ số thể tích trong khối chóp tam giác, tứ diện. Dạng 2. Tỉ số thể tích trong khối chóp tứ giác. Dạng 3. Tỉ số thể tích của khối lăng trụ. BÀI 6 . CỰC TRỊ VÀ ỨNG DỤNG. Dạng 1. Cực trị. Dạng 2. Toán thực tế.
3296 bài tập trắc nghiệm thể tích khối đa diện có đáp án
Tài liệu gồm 296 trang, tuyển tập 3296 bài tập trắc nghiệm thể tích khối đa diện có đáp án, giúp học sinh rèn luyện khi học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán. Trích dẫn tài liệu 3296 bài tập trắc nghiệm thể tích khối đa diện có đáp án: + Có một khối gỗ dạng hình chóp O.ABC có OA, OB, OC đôi một vuông góc với nhau, OA = 3 cm, OB = 6 cm, OC = 12 cm. Trên mặt (ABC) người ta đánh dấu một điểm M sau đó người ta cắt gọt khối gỗ để thu được một hình hộp chữ nhật có OM là một đường chéo đồng thời hình hộp có 3 mặt nằm trên 3 mặt của tứ diện (xem hình vẽ). Thể tích lớn nhất của khối gỗ hình hộp chữ nhật bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành. Góc tạo bởi mặt bên (SAB) với đáy bằng α. Tỉ số diện tích của tam giác SAB và hình bình hành ABCD bằng k. Mặt phẳng (P) đi qua AB và chia hình chóp S.ABCD thành hai phần có thể tích bằng nhau. Gọi β là góc tạo bởi mặt phẳng (P) và mặt đáy. Tính cot β theo k và α. + Nhân ngày Phụ Nữ Việt Nam 20/10/2020, ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp. Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp, biết rằng độ dày lớp mạ vàng tại mọi điểm trên hộp là như nhau. Gọi chiều cao và độ dài cạnh đáy của chiếc hộp lần lượt là h và x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của h và x phải là?