Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập vận dụng min - max hình học không gian có lời giải chi tiết

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tuyển chọn các bài tập vận dụng min – max hình học không gian có lời giải chi tiết, tài liệu được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Các bài toán thuộc chủ đề min – max (giá trị lớn nhất – giá trị nhỏ nhất) trong hình học không gian đa phần là các bài toán khó, là câu phân loại học sinh khá giỏi trong các đề thi, đề kiểm tra và gần như không thể thiếu trong các đề thi THPT Quốc gia môn Toán. Thông qua các bài toán được phân tích và giải chi tiết, hy vọng các em sẽ rút ra được những kỹ thuật xử lý khi gặp dạng toán này. Trích dẫn tài liệu bài tập vận dụng min – max hình học không gian có lời giải chi tiết : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = b và vuông góc với mặt phẳng (ABCD). Điểm M thay đổi trên cạnh CD, H là hình chiếu vuông góc của S trên BM. Tìm giá trị lớn nhất của thể tích khối chóp S.ABH theo a, b. [ads] + Gọi x, y, z là chiều dài, chiều rộng và chiều cao của thùng giấy dạng hình hộp chữ nhật không có nắp trên (hình vẽ). S là tổng diện tích xung quanh và đáy còn lại. Trong các thùng có cùng diện tích S, tìm tổng x + y + z theo S của chiếc thùng có thể tích lớn nhất. + Cho tứ diện ABCD có DA = DB = DC = 6 và đôi một vuông góc với nhau. Điểm M thay đổi trong tam giác ABC. Các đường thẳng đi qua M song song DA, DB, DC theo thứ tự cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt tại A1, B1, C1. Tìm thể tích lớn nhất của khối tự diện MA1B1C1 khi M thay đổi.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết
Tài liệu gồm 111 trang tuyển chọn bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết, các bài tập với đầy đủ các dạng bài từ cơ bản đến nâng cao. Nội dung tài liệu : Phần A. Bài tập trắc nghiệm nguyên hàm có lời giải chi tiết + Dạng 1. Áp dụng công thức nguyên hàm cơ bản + Dạng 2. Phương pháp đổi biến số loại 1 tìm nguyên hàm (Đặt t = P(x)) + Dạng 3. Phương pháp đổi biến số loại 2 tìm nguyên hàm (Đặt x = Q(t)) + Dạng 4. Phương pháp từng phân để tìm nguyên hàm + Dạng 5. Tìm nguyên hàm của hàm số hữu tỉ + Dạng 6. Tìm nguyên hàm của hàm số lượng giác + Dạng 7. Phương pháp vi phân nguyên hàm Phần B. Bài tập trắc nghiệm nguyên hàm có đáp án [ads] Xem thêm :  Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng – Giáp Minh Đức (gồm 118 trang tổng hợp bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng có đáp án)
Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 97 trang tóm tắt lý thuyết và tuyển tập các bài toán chủ đề nguyên hàm, tích phân và ứng dụng. Tất cả các bài toán đều có đáp án và lời giải chi tiết . Bài 1. Nguyên hàm Bài 2. Một số phương pháp tìm nguyên hàm + Vấn đề 1. Phương pháp đổi biến số + Vấn đề 2. Phương pháp lấy nguyên hàm từng phần Bài 3. Tích phân + Vấn đề 1. Tính chất tích phân + Vấn đề 2. Tích phân cơ bản + Vấn đề 3. Ứng dụng thực tiễn [ads] Bài 4. Một số phương pháp tính tích phân + Vấn đề 1.1. Phương pháp đổi biến số loại 1 + Vấn đề 1.2. Phương pháp đổi biến số loại 2 + Vấn đề 2. Phương pháp tích phân từng phần + Vấn đề 3. Tích phân ẩn hsm số Bài 5. Ứng dụng của tích phân + Vấn đề 1. Tính diện tích hình phẳng + Vấn đề 2. Tính thể tích khối tròn xoay
Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Giáp Minh Đức
Tài liệu gồm 118 trang tổng hợp bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng có đáp án. Các bài tập được phân dạng thành các mục: Phần 1: Các phương pháp tìm nguyên hàm I. Phương pháp dùng bảng nguyên hàm II. Phương pháp vi phân III. Phương pháp đổi biến số IV. Phương pháp nguyên hàm từng phần V. Nguyên hàm hữu tỉ VI. Nguyên hàm của của hàm số tại một điểm VII. Nguyên hàm của hàm số lượng giác Phần 2: Các phương pháp tính tích phân I. Phương pháp bảng nguyên hàm II. Phương pháp vi phân III. Phương pháp đổi biến số [ads] IV. Phương pháp tích phân từng phần V. Tính chất của tích phân VI. Tích phân hữu tỉ VII. Tích phân chứa dấu giá trị tuyệt đối Phần 3: Các ứng dụng của tích phân I. Ứng dụng tích phân trong tính diện tích hình phẳng II. Ứng dụng tích phân trong tính thể tích khối tròn xoay III. Các bài toán ứng dụng thực tế Các bài tập đều có đáp án
Bài tập tích phân chống Casio - Nguyễn Tiến Chinh
Tài liệu gồm 14 trang với 139 bài toán tích phân chống Casio. Đây là lớp các bài toán thuộc mức độ vận dụng, vận dụng cao trong chủ đề nguyên hàm, tích phân và ứng dụng, các bài toán “nhằm” hạn chế khả năng can thiệp của máy tính Casio trong việc giải nhanh, qua đó giúp học sinh phát huy tư duy giải toán. Tài liệu do thầy Nguyễn Tiến Chinh biên soạn.